Weed Response to Foliar Coapplications of Glyphosate and Zinc Sulfate

2009 ◽  
Vol 23 (1) ◽  
pp. 171-174 ◽  
Author(s):  
Derek M. Scroggs ◽  
Donnie K. Miller ◽  
Alexander M. Stewart ◽  
B. Rogers Leonard ◽  
James L. Griffin ◽  
...  

Field trials were conducted during 2006 and 2007 and a container study was performed twice in 2007 at the Dean Lee Research and Extension Center in Alexandria, LA to evaluate the interaction of glyphosate and zinc coapplied to selected weeds. Across all experiments, no differences in either visible weed control or weed fresh weight were detected among glyphosate formulations. In the field studies, weed control was greatest when glyphosate was applied alone, in which case control of barnyardgrass, browntop millet, and Palmer amaranth ranged between 93 and 95%. When glyphosate was coapplied with formulations of zinc, control of the aforementioned weed species was reduced to 39, 39, and 45%, respectively. Visual estimates of weed control in the container studies showed glyphosate performance to be the highest (82 to 98%) in the absence of zinc for control of barnyardgrass, browntop millet, johnsongrass, ivyleaf morningglory, and redroot pigweed. Across all weed species, control was reduced 43 to 59% when zinc was coapplied with glyphosate. Similar results were noted in reduction of weed fresh weights. Results indicate that glyphosate-based weed control is reduced when coapplied with the zinc products at their current use rates. Producers should be aware of this antagonism and these coapplications should not be recommended.

Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 1002-1009 ◽  
Author(s):  
Dunk Porterfield ◽  
John W. Wilcut ◽  
Jerry W. Wells ◽  
Scott B. Clewis

Field studies conducted at three locations in North Carolina in 1998 and 1999 evaluated crop tolerance, weed control, and yield with CGA-362622 alone and in combination with various weed management systems in transgenic and nontransgenic cotton systems. The herbicide systems used bromoxynil, CGA-362622, glyphosate, and pyrithiobac applied alone early postemergence (EPOST) or mixtures of CGA-362622 plus bromoxynil, glyphosate, or pyrithiobac applied EPOST. Trifluralin preplant incorporated followed by (fb) fluometuron preemergence (PRE) alone or fb a late POST–directed (LAYBY) treatment of prometryn plus MSMA controlled all the weed species present less than 90%. Herbicide systems that included soil-applied and LAYBY herbicides plus glyphosate EPOST or mixtures of CGA-362622 EPOST plus bromoxynil, glyphosate, or pyrithiobac controlled broadleaf signalgrass, entireleaf morningglory, large crabgrass, Palmer amaranth, prickly sida, sicklepod, and smooth pigweed at least 90%. Only cotton treated with these herbicide systems yielded equivalent to the weed-free check for each cultivar. Bromoxynil systems did not control Palmer amaranth and sicklepod, pyrithiobac systems did not control sicklepod, and CGA-362622 systems did not control prickly sida.


2020 ◽  
Vol 47 (2) ◽  
pp. 94-102
Author(s):  
K.M. Eason ◽  
T.L Grey ◽  
R.S. Tubbs ◽  
E.P. Prostko ◽  
X. Li

ABSTRACT Weed control is an integral part of peanut (Arachis hypogaea L.) production systems. Paraquat is a staple postemergence (POST) herbicide used in peanut production in the Southeast US. Inorganic liquid nutrient (ILN) concentrates are liquid fertilizers that are recommended for use by producers in tank-mixtures with paraquat by some distributors. Irrigated and non-irrigated field trials were conducted to quantify the safening effect of ILN in various herbicide tank-mixtures on peanut and determine the suitability as tank-mix replacements for bentazon. Field studies indicated similar POST herbicide responses for peanut injury. Greenhouse experiments evaluated POST paraquat tank-mixtures with ILN for weed control and biomass reduction. Paraquat plus S-metolachlor caused significant leaf burn and stunting. Greatest peanut foliar injury occurred 3 d after treatment (DAT) but was transient. For the irrigated field trial, paraquat plus S-metolachlor plus ILN had similar injury levels as compared to paraquat plus S-metolachlor plus acifluorfen plus bentazon at 22 to 25%. For the non-irrigated field study, the application of paraquat plus ILN had 10% injury compared to paraquat at 22%. While injury was the greatest directly following application, peanut was able to recover with no yield or grade loss for both the irrigated and non-irrigated studies. In the greenhouse study, the effect of ILN varied by weed species and reduced leaf injury on several broadleaf weeds. While the addition of ILN to the various paraquat tank-mixtures initially reduced injury, it did not correspond to increases in yield or grade. The variability in weed control, transient injury mitigation, and no yield increase indicates that Georgia peanut growers will receive no benefit for including ILN in their paraquat tank-mixtures but if needed to improve crop nutrition, ILN will not reduce weed control.


2021 ◽  
pp. 1-18
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Ramon G. Leon ◽  
David L. Jordan ◽  
...  

Abstract Field studies were conducted to evaluate linuron for POST control of Palmer amaranth in sweetpotato to minimize reliance on protoporphyrinogen oxidase (PPO)-inhibiting herbicides. Treatments were arranged in a two by four factorial where the first factor consisted of two rates of linuron (420 and 700 g ai ha−1), and the second factor consisted of linuron applied alone or in combinations of linuron plus a nonionic surfactant (NIS) (0.5% v/v), linuron plus S-metolachlor (800 g ai ha−1), or linuron plus NIS plus S-metolachlor. In addition, S-metolachlor alone and nontreated weedy and weed-free checks were included for comparison. Treatments were applied to ‘Covington’ sweetpotato 8 d after transplanting (DAP). S-metolachlor alone provided poor Palmer amaranth control because emergence had occurred at applications. All treatments that included linuron resulted in at least 98 and 91% Palmer amaranth control 1 and 2 wk after treatment (WAT), respectively. Including NIS with linuron did not increase Palmer amaranth control compared to linuron alone, but increased sweetpotato injury and subsequently decreased total sweetpotato yield by 25%. Including S-metolachlor with linuron resulted in the greatest Palmer amaranth control 4 WAT, but increased crop foliar injury to 36% 1 WAT compared to 17% foliar injury from linuron alone. Marketable and total sweetpotato yield was similar between linuron alone and linuron plus S-metolachlor or S-metolachlor plus NIS treatments, though all treatments resulted in at least 39% less total yield than the weed-free check resulting from herbicide injury and/or Palmer amaranth competition. Because of the excellent POST Palmer amaranth control from linuron 1 WAT, a system including linuron applied 7 DAP followed by S-metolachlor applied 14 DAP could help to extend residual Palmer amaranth control further into the critical period of weed control while minimizing sweetpotato injury.


2011 ◽  
Vol 25 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Jared R. Whitaker ◽  
Alan C. York ◽  
David L. Jordan ◽  
A. Stanley Culpepper

Glyphosate-resistant (GR) Palmer amaranth has become a serious pest in parts of the Cotton Belt. Some GR cotton cultivars also contain the WideStrike™ insect resistance trait, which confers tolerance to glufosinate. Use of glufosinate-based management systems in such cultivars could be an option for managing GR Palmer amaranth. The objective of this study was to evaluate crop tolerance and weed control with glyphosate-based and glufosinate-based systems in PHY 485 WRF cotton. The North Carolina field experiment compared glyphosate and glufosinate alone and in mixtures applied twice before four- to six-leaf cotton. Additional treatments included glyphosate and glufosinate mixed withS-metolachlor or pyrithiobac applied to one- to two-leaf cotton followed by glyphosate or glufosinate alone on four- to six-leaf cotton. All treatments received a residual lay-by application. Excellent weed control was observed from all treatments on most weed species. Glyphosate was more effective than glufosinate on glyphosate-susceptible (GS) Palmer amaranth and annual grasses, while glufosinate was more effective on GR Palmer amaranth. Annual grass and GS Palmer amaranth control by glyphosate plus glufosinate was often less than control by glyphosate alone but similar to or greater than control by glufosinate alone, while mixtures were more effective than either herbicide alone on GR Palmer amaranth. Glufosinate caused minor and transient injury to the crop, but no differences in cotton yield or fiber quality were noted. This research demonstrates glufosinate can be applied early in the season to PHY 485 WRF cotton without concern for significant adverse effects on the crop. Although glufosinate is often less effective than glyphosate on GS Palmer amaranth, GR Palmer amaranth can be controlled with well-timed applications of glufosinate. Use of glufosinate in cultivars with the WideStrike trait could fill a significant void in current weed management programs for GR Palmer amaranth in cotton.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


Weed Science ◽  
1993 ◽  
Vol 41 (3) ◽  
pp. 347-352 ◽  
Author(s):  
Glenn R. Wehtje ◽  
John W. Wilcut ◽  
John A. Mcguire

Mixtures of chlorimuron and 2,4-DB were additive with respect to crop injury and were either additive or slightly antagonistic with respect to weed control in greenhouse experiments. Absorption and translocation of14C following application of14C-chlorimuron and14C-2,4-DB were not affected by the presence of the other unlabeled herbicide, except in Florida beggarweed and peanut where 2,4-DB affected distribution of14C-chlorimuron in the treated leaf. In field studies, maximum efficacy was obtained with mixtures of chlorimuron plus 2,4-DB applied 7 or 9 wk after planting. Florida beggarweed control was greatest with chlorimuron or chlorimuron mixtures while the addition of 2,4-DB to chlorimuron improved morningglory and sicklepod control. At 9 and 11 wk after planting, addition of 2,4-DB to chlorimuron controlled Florida beggarweed better than chlorimuron alone. Peanut yields were increased by the addition of 2,4-DB at later applications.


1998 ◽  
Vol 12 (2) ◽  
pp. 215-222
Author(s):  
Robin R. Bellinder ◽  
Marija Arsenovic ◽  
Jonathan J. Kirkwyland ◽  
Russell W. Wallace

Following suggested guidelines developed by the Environmental Protection Agency (EPA), comparative snap bean herbicide performance field trials were conducted from 1993 to 1995 in New York. Data were obtained on crop injury, weed control, and weed biomass, and crop yield, quality, and losses during harvest. Trifluralin, EPTC, and pendimethalin applied preplant incorporated (PPI) and applications of metolachlor applied preemergence (PRE) provided less than adequate control of redroot pigweed, common lambsquarters, and hairy galinsoga. Cultivation improved weed control with PPI and PRE applications. Metolachlor + fomesafen PRE provided good control of hairy galinsoga, adequate redroot pigweed control, and marginal control of common lambsquarters. Fomesafen applied postemergence (POST), combinations of metolachlor applied PRE with fomesafen or bentazon applied POST, and fomesafen + bentazon applied POST adequately controlled the three weed species without cultivation. Herbicide treatments had little measurable impact on snap bean quality or losses during harvest. Information from product comparison trials may be useful in developing recommendations for growers but may prove less than adequate in providing data necessary for a thorough evaluation of the relative benefits of individual herbicides as intended by EPA guidelines. Difficulties were encountered in following the guidelines, and costs of conducting the product comparison trials for a single crop in one growing region exceeded $90,000 over 3 yr.


Weed Science ◽  
1990 ◽  
Vol 38 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Steven G. Russell ◽  
Thomas J. Monaco ◽  
Jerome B. Weber

Field trials were conducted in 1986 and 1987 to determine the effects of moisture on herbicidal activity of cinmethylin applied preemergence at 0.0, 0.3, 0.6, and 0.9 kg ai ha to both dry and moist sandy loam soil. Herbicide application was followed by varying amounts of irrigation. Weed species included velvetleaf, prickly sida, green foxtail, and barnyardgrass. When cinmethylin was applied to a moist soil or when 2.5 cm of irrigation was applied 5 days after cinmethylin application to a dry soil, overall weed control was reduced. Optimum weed control resulted from cinmethylin application to dry soil followed either by a 2.5-cm irrigation within 8 h or a 7.6-cm irrigation within 36 h.


Weed Science ◽  
1982 ◽  
Vol 30 (5) ◽  
pp. 498-502 ◽  
Author(s):  
Jeffrey F. Derr ◽  
Thomas J. Monaco

In greenhouse studies, soil organic matter reduced the herbicidal activity of ethalfluralin (N-ethyl-N-(2-methyl-2-propenyl)-2,6-dinitro-4-(trifluoromethyl)benzenamine). Fifty percent inhibition (I5.0) values for barnyardgrass [Echinochloa crus-galli(L.) Beauv.] stand, injury, and shoot fresh weight increased as the soil organic-matter level increased. No difference in ethalfluralin tolerance was found among 16 cucumber (Cucumis sativusL.) cultivars. When grouped according to market type, fresh market cultivars tended to be injured more than pickling cultivars by excess ethalfluralin. Both shoots and roots of cucumber absorbed the herbicide, but exposure of roots to ethalfluralin was more toxic than exposure of shoots. Field studies indicated that with certain edaphic and environmental conditions, cucumbers can be injured by preemergence applications of ethalfluralin. Injury was greatest in a low organic-matter soil following a heavy rain. Ethalfluralin at 1.3 kg/ha gave adequate weed control in 1 and 3% organic-matter soils, but not in a 9% organic-matter soil.


2010 ◽  
Vol 24 (4) ◽  
pp. 504-509 ◽  
Author(s):  
Glenn Wehtje ◽  
Charles H. Gilliam ◽  
Stephen C. Marble

Both prodiamine and flumioxazin are used in the nursery production and landscape maintenance industries in the southeastern United States for preemergence weed control. Research was conducted to determine whether a tank mixture of these two herbicides would be more effective than either component applied alone. Prodiamine alone, flumioxazin alone, and a 72 : 28 (by weight) prodiamine–flumioxazin mixture were each applied at a series of rates to containers filled with a pine bark–sand substrate that is typical for nursery production in the southeastern United States. Our intent was to have a rate range that hopefully extended from ineffective to lethal for each treatment series. Subsequent to treatment, containers were overseeded with either large crabgrass, spotted spurge, or eclipta. Percent control was determined by comparing treated weed foliage fresh weight to that of the appropriate nontreated control at 6 and 12 wk after application. ANOVA followed by nonlinear regression was used to evaluate the interaction of prodiamine and flumioxazin when combined and to determine the rate of each treatment series required for 95% control (if applicable) for each of the three weed species. Results varied with weed species. The mixture was synergistic and more cost effective than either of the components applied alone in controlling spotted spurge. With respect to large crabgrass control, the mixture was additive and slightly more cost effective than the components. Eclipta could only be controlled with flumioxazin, and this control was antagonized by the addition of prodiamine.


Sign in / Sign up

Export Citation Format

Share Document