Efficacy of Propoxycarbazone-sodium for Cheat (Bromus secalinus) Control in Winter Wheat and Carryover on Double-Cropped Grain Sorghum

2009 ◽  
Vol 23 (2) ◽  
pp. 202-205 ◽  
Author(s):  
Thomas F. Peeper ◽  
Amanda E. Stone ◽  
Jason P. Kelley

Southern Great Plains wheat growers typically apply either sulfosulfuron or propoxycarbazone-sodium for selective control of cheat. Although astute growers apply herbicides early in the growing season, herbicide application is often delayed until mid-winter or later. The effects of application timing of propoxycarbazone-sodium on cheat efficacy and on injury to the following grain sorghum crop have not been documented. Application of each herbicide at 17 intervals throughout the growing season indicated that cheat control with propoxycarbazone-sodium was greater than or equal to 90% even when application was delayed for several months after seeding. In contrast, cheat control with sulfosulfuron was variable when application was delayed more than 6 wk after wheat was seeded. Delaying sulfosulfuron application decreased wheat yield. Grain sorghum was not affected by propoxycarbazone-sodium residues regardless of application timing to wheat. Conversely, grain sorghum was severely injured by sulfosulfuron residues regardless of herbicide application timing.

2006 ◽  
Vol 20 (2) ◽  
pp. 445-452 ◽  
Author(s):  
Jon C. Stone ◽  
Thomas F. Peeper ◽  
Amanda E. Stone

In the Southern Great Plains, producers of hard red winter wheat seek sustainable methods for controlling cheat and improving economic returns. Experiments were conducted at two sites in north-central Oklahoma to determine the effect of cheat management programs, with various weed control strategies, on cheat densities and total net returns. The cheat management programs, initiated following harvest of winter wheat, included conventionally tilled, double-crop grain sorghum (Sorghum bicolorL.) followed by soybean (Glycine maxL.); and continuous winter wheat. Rotating out of winter wheat for one growing season increased yield of succedent wheat up to 32% and 42% at Billings and Ponca City, respectively. Dockage due to cheat in the succedent wheat was reduced up to 78% and 87% by rotating out of winter wheat for one growing season at Billings and Ponca City, respectively. Cheat management programs including a crop rotation with herbicides applied to the grain sorghum, except for an application of atrazine + metolachlor at Ponca City, improved total net returns over the nontreated continuous wheat option. Cheat panicles in the succedent wheat were reduced up to 87% by rotation out of winter wheat for one growing season.


2021 ◽  
pp. 1-14
Author(s):  
Jodie A. Crose ◽  
Misha R. Manuchehri ◽  
Todd A. Baughman

Abstract Three herbicide premixes have recently been introduced for weed control in wheat. These include: halauxifen + florasulam, thifensulfuron + fluroxypyr, and bromoxynil + bicyclopyrone. The objective of this study was to evaluate these herbicides along with older products for their control of smallseed falseflax in winter wheat in Oklahoma. Studies took place during the 2017, 2018, and 2020 winter wheat growing seasons. Weed control was visually estimated every two weeks throughout the growing season and wheat yield was collected in all three years. Smallseed falseflax size was approximately six cm in diameter at time of application in all years. Control ranged from 96 to 99% following all treatments with the exception of bicyclopyrone + bromoxynil and dicamba alone, which controlled falseflax 90%. All treatments containing an acetolactate synthase (ALS)-inhibiting herbicide achieved adequate control; therefore, resistance is not suspected in this population. Halauxifen + florasulam and thifensulfuron + fluroxypyr effectively controlled smallseed falseflax similarly to other standards recommended for broadleaf weed control in wheat in Oklahoma. Rotational use of these products allows producers flexibility in controlling smallseed falseflax and reduces the potential for development of herbicide resistance in this species.


2021 ◽  
Vol 310 ◽  
pp. 108631
Author(s):  
Pradeep Wagle ◽  
Prasanna H. Gowda ◽  
Brian K. Northup ◽  
James P.S. Neel ◽  
Patrick J. Starks ◽  
...  

1997 ◽  
Vol 11 (1) ◽  
pp. 30-34
Author(s):  
Jeffrey A. Koscelny ◽  
Thomas F. Peeper

Seven field experiments were conducted in Oklahoma to compare efficacy and wheat response to currently registered cheat suppression or control herbicide treatments. Chlorsulfuron + metsulfuron premix (5:1 w/w) at 26 g ai/ha applied PRE controlled cheat 20 to 61%, increased wheat grain yields at two of seven locations, and decreased dockage due to cheat at five of seven locations. Chlorsulfuron + metsulfuron at 21 g/ha tank-mixed with metribuzin at 210 g/ha, applied early fall POST, controlled cheat 36 to 98% and increased wheat yield at four of seven locations. Metribuzin applied POST in the fall at 420 g/ha controlled cheat 56 to 98% and increased wheat yields at five of seven locations. Both POST treatments decreased dockage at all locations.


1991 ◽  
Vol 5 (2) ◽  
pp. 369-375 ◽  
Author(s):  
Gail A. Wicks ◽  
Robert N. Klein

We conducted research to determine if soybeans can be grown successfully in a no-till environment, in the semi-arid areas of the central Great Plains near North Platte, NE. Soybeans planted no-till into winter wheat stubble that was sprayed with glyphosate yielded more than when planted into soil that was rototilled in a winter wheat-soybean-fallow rotation. However, grain yield averaged only 420 kg ha-1during 1975, 1976, and 1977. No-till soybean grown in a winter wheat-grain sorghum-soybean rotation during 1982 through 1985 yielded an average of 1370 kg ha-1. Low yields were associated with lack of precipitation during the fallow period after winter wheat harvest or grain sorghum harvest and during the soybean pod elongation and filling period. Several herbicides gave excellent weed control in soybeans when applied either after wheat harvest, early preplant, or at planting time. None of the herbicides persisted long enough to reduce grain yields of winter wheat planted into the soybean residue. With present production costs these nonirrigated rotations are not economical in the semi-arid region of the central Great Plains of the United States.


2013 ◽  
Vol 59 (No. 3) ◽  
pp. 101-107 ◽  
Author(s):  
P. Hamouz ◽  
K. Hamouzová ◽  
J. Holec ◽  
L. Tyšer

An aggregated distribution pattern of weed populations provides opportunity to reduce the herbicide application if site-specific weed management is adopted. This work is focused on the practical testing of site-specific weed management in a winter wheat and the optimisation of the control thresholds. Patch spraying was applied to an experimental field in Central Bohemia. Total numbers of 512 application cells were arranged into 16 blocks, which allowed the randomisation of four treatments in four replications. Treatment 1 represented blanket spraying and the other treatments differed by the herbicide application thresholds. The weed infestation was estimated immediately before the post-emergence herbicide application. Treatment maps for every weed group were created based on the weed abundance data and relevant treatment thresholds. The herbicides were applied using a sprayer equipped with boom section control. The herbicide savings were calculated for every treatment and the differences in the grain yield between the treatments were tested using the analysis of variance. The site-specific applications provided herbicide savings ranging from 15.6% to 100% according to the herbicide and application threshold used. The differences in yield between the treatments were not statistically significant (P = 0.81). Thus, the yield was not lowered by site-specific weed management.


2019 ◽  
Vol 11 (9) ◽  
pp. 1088 ◽  
Author(s):  
Yulong Wang ◽  
Xingang Xu ◽  
Linsheng Huang ◽  
Guijun Yang ◽  
Lingling Fan ◽  
...  

The accurate and timely monitoring and evaluation of the regional grain crop yield is more significant for formulating import and export plans of agricultural products, regulating grain markets and adjusting the planting structure. In this study, an improved Carnegie–Ames–Stanford approach (CASA) model was coupled with time-series satellite remote sensing images to estimate winter wheat yield. Firstly, in 2009 the entire growing season of winter wheat in the two districts of Tongzhou and Shunyi of Beijing was divided into 54 stages at five-day intervals. Net Primary Production (NPP) of winter wheat was estimated by the improved CASA model with HJ-1A/B satellite images from 39 transits. For the 15 stages without HJ-1A/B transit, MOD17A2H data products were interpolated to obtain the spatial distribution of winter wheat NPP at 5-day intervals over the entire growing season of winter wheat. Then, an NPP-yield conversion model was utilized to estimate winter wheat yield in the study area. Finally, the accuracy of the method to estimate winter wheat yield with remote sensing images was verified by comparing its results to the ground-measured yield. The results showed that the estimated yield of winter wheat based on remote sensing images is consistent with the ground-measured yield, with R2 of 0.56, RMSE of 1.22 t ha−1, and an average relative error of −6.01%. Based on time-series satellite remote sensing images, the improved CASA model can be used to estimate the NPP and thereby the yield of regional winter wheat. This approach satisfies the accuracy requirements for estimating regional winter wheat yield and thus may be used in actual applications. It also provides a technical reference for estimating large-scale crop yield.


Sign in / Sign up

Export Citation Format

Share Document