Efficacy Comparison of Some New Natural-Product Herbicides for Weed Control at Two Growth Stages

2009 ◽  
Vol 23 (3) ◽  
pp. 431-437 ◽  
Author(s):  
Hussein F. H. Abouziena ◽  
Ahmad A. M. Omar ◽  
Shiv D. Sharma ◽  
Megh Singh

There is an urgent need to accelerate the development and implementation of effective organic-compliant herbicides that are environmentally safe and that help the producer meet increasing consumer demand for organic products. Therefore, greenhouse experiments were conducted to evaluate the effectiveness of acetic acid (5%), acetic acid (30%), citric acid (10%), citric acid (5%) + garlic (0.2%), citric acid (10%) + garlic (0.2%), clove oil (45.6%), and corn gluten meal (CGM) compounds as natural-product herbicides for weed control. The herbicides were applied to the broadleaf weeds stranglervine, wild mustard, black nightshade, sicklepod, velvetleaf, and redroot pigweed and to narrowleaf weeds crowfootgrass, Johnsongrass, annual ryegrass, goosegrass, green foxtail, and yellow nutsedge. The herbicides were applied POST at two weed growth stages, namely, two to four and four to six true-leaf stages. CGM was applied PPI in two soil types. Citric acid (5%) + garlic (0.2%) had the greatest control (98%) of younger broadleaf weeds, followed by acetic acid (30%) > CGM > citric acid (10%) > acetic acid (5%) > citric acid (10%) + garlic (0.2%), and clove oil. Wild mustard was most sensitive to these herbicides, whereas redroot pigweed was the least sensitive. Herbicides did not control narrowleaf weeds except for acetic acid (30%) when applied early POST (EPOST) and CGM. Acetic acid (30%) was phytotoxic to all broadleaf weeds and most narrowleaf weeds when applied EPOST. Delayed application until the four- to six-leaf stage significantly reduced efficacy; acetic acid was less sensitive to growth stage than other herbicides. These results will help to determine effective natural herbicides for controlling weeds in organic farming.

Weed Science ◽  
1986 ◽  
Vol 34 (1) ◽  
pp. 101-105 ◽  
Author(s):  
John D. Nalewaja ◽  
Grzegorz Skrzypczak

Experiments in controlled-environment chambers indicated that high temperature, 30 C, increased the phytotoxicity of bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) to wild mustard (Sinapis arvensisL. # SINAR) and redroot pigweed (Amaranthus retroflexusL. # AMARE) compared to low temperature, 10 C, during and after treatment. Bromoxynil phytotoxicity generally was higher at relative humidities of 90 to 95% compared to 40 to 60%, but relative humidity had less influence on bromoxynil phytotoxicity than did temperature. A simulated rain immediately after bromoxynil treatment reduced control of both species, but the reduction was of no practical importance for wild mustard. The data indicate that wild mustard and redroot pigweed control would be reduced by bromoxynil application during a period of low temperatures or to plants in advanced growth stages.


1993 ◽  
Vol 7 (4) ◽  
pp. 844-850 ◽  
Author(s):  
Anthony F. Dobbels ◽  
George Kapusta

Field studies were conducted at Carbondale and Belleville, IL to evaluate weed control in corn with a total POST herbicide program. Nicosulfuron was applied at 24 and 35 g/ha alone and in combination with 2,4-D, dicamba, bromoxynil, bentazon, atrazine, and bentazon, bromoxynil, and dicamba plus atrazine. Nicosulfuron controlled 98 to 100% of giant foxtail both years at both locations. Control of giant foxtail was reduced when nicosulfuron at 24 g/ha was applied as a tank-mix with atrazine, and with bentazon, bromoxynil, or dicamba plus atrazine at Belleville in 1991. Also, bentazon plus atrazine with nicosulfuron at 35 g/ha reduced control of giant foxtail. Control of common lambsquarters, jimsonweed, and velvetleaf was dependent on nicosulfuron rate, companion herbicide, and growing conditions. Nicosulfuron alone or as a tank-mix with the companion herbicides controlled redroot pigweed 100% at both sites both years but control of yellow nutsedge was less than 50%. Corn yield was related to level of weed control obtained in most instances.


2010 ◽  
Vol 24 (3) ◽  
pp. 319-325 ◽  
Author(s):  
Santiago M. Ulloa ◽  
Avishek Datta ◽  
Stevan Z. Knezevic

Propane flaming could be an effective alternative tool for weed control in organic cropping systems. However, response of major weeds to broadcast flaming must be determined to optimize its proper use. Therefore, field experiments were conducted at the Haskell Agricultural Laboratory, Concord, NE in 2007 and 2008 using six propane doses and four weed species, including green foxtail, yellow foxtail, redroot pigweed, and common waterhemp. Our objective was to describe dose–response curves for weed control with propane. Propane flaming response was evaluated at three different growth stages for each weed species. The propane doses were 0, 12, 31, 50, 68, and 87 kg ha−1. Flaming treatments were applied utilizing a custom-built flamer mounted on a four-wheeler (all-terrain vehicle) moving at a constant speed of 6.4 km h−1. The response of the weed species to propane flaming was evaluated in terms of visual ratings of weed control and dry matter recorded at 14 d after treatment. Weed species response to propane doses were described by log-logistic models relating propane dose to visual ratings or plant dry matter. Overall, response of the weed species to propane flaming varied among species, growth stages, and propane dose. In general, foxtail species were more tolerant than pigweed species. For example, about 85 and 86 kg ha−1were the calculated doses needed for 90% dry matter reduction in five-leaf green foxtail and four-leaf yellow foxtail compared with significantly lower doses of 68 and 46 kg ha−1of propane for five-leaf redroot pigweed and common waterhemp, respectively. About 90% dry matter reduction in pigweed species was achieved with propane dose ranging from 40 to 80 kg ha−1, depending on the growth stage when flaming was conducted. A similar dose of 40 to 60 kg ha−1provided 80% reduction in dry matter for both foxtail species when flaming was done at their vegetative growth stage. However, none of the doses we tested could provide 90% dry matter reduction in foxtail species at flowering stage. It is important to note that foxtail species started regrowing 2 to 3 wk after flaming. Broadcast flaming has potential for control or suppression of weeds in organic farming.


Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 310-314 ◽  
Author(s):  
Monte D. Anderson ◽  
W. Eugene Arnold

Desmedipham [ethylm-hydroxycarbanilate carbanilate(ester)] controlled wild mustard (Sinapsis arvensisL. ♯3SINAR) and redroot pigweed (Amaranthus retroflexusL. ♯ AMARE) more effectively than phenmedipham (methylm-hydroxycarbanilatem-methylcarbanilate). A synergistic interaction occurred with all tank-mix combinations of the two herbicides for wild mustard control, except combinations containing 0.71 kg ai/ha of desmedipham. The magnitude of the synergism decreased as the rate of desmedipham was increased and increased as the rate of phenmedipham increased. Both herbicides caused injury symptoms of leaf necrosis and height reduction to sunflowers (Helianthus annuusL.). Crop injury and sunflower heights were affected more by desmedipham than by phenmedipham. Injury effects were temporary and had no influence on sunflower yields.


2008 ◽  
Vol 35 (1) ◽  
pp. 67-72 ◽  
Author(s):  
W. Carroll Johnson ◽  
Benjamin G. Mullinix

Abstract Studies were conducted near Tifton, GA to develop weed management systems for organic peanut production. Trials in 2004 and 2005 evaluated row patterns (two levels), remedial weed control (four levels), and cultivation (three levels). Row patterns were wide rows (91 cm apart) and narrow rows (30 cm apart). Remedial weed control was early-season applications of clove oil, citric plus acetic acid, broadcast propane flaming, and a nontreated control. Cultivation regimes were 1X or 2X sweep cultivation and a non-cultivated control. The experimental sites had heavy natural infestations of annual grasses and broadleaf weeds. None of the treatment combinations effectively controlled weeds season-long and resulting peanut yields were poor. Annual grasses were particularly troublesome due to ineffective control from flaming and citric plus acetic acid. Clove oil was slightly more effective in controlling annual grasses than the other remedial treatments, but annual grass control was still unacceptable. Dicot weeds were not effectively controlled by mid-season, although clove oil and flaming controlled the seedling weeds early season. The lack of residual weed control by the remedial weed control treatments resulted in heavy weed infestations by mid-season. Poor control of annual grasses, no residual weed control, and high cost of remedial treatments indicates that these systems of weed management in organic peanut production are not suited to sites with heavy weed infestations.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Nader Soltani ◽  
Robert E. Nurse ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Four field trials were conducted over a three-year period (2011–2013) in southwestern Ontario to evaluate the level of weed control provided by various halosulfuron tankmixes applied preplant incorporated (PPI) in white bean. Trifluralin, s-metolachlor, halosulfuron, and imazethapyr applied alone or in combination caused 4% or less visible injury 1 and 4 weeks after emergence (WAE) in white bean. Trifluralin, s-metolachlor, halosulfuron, and imazethapyr applied PPI provided 80–96%, 84–95%, 83–100%, and 75–92% control of redroot pigweed; 19–28%, 30–40%, 97–99%, and 73–84% control of common ragweed; 94–96%, 63–82%, 96–100%, and 96–100% control of common lambsquarters; 14-15%, 12–35%, 100%, and 96–97% control of wild mustard; and 96–97%, 95–97%, 53–56%, and 80–82% control of green foxtail, respectively. The two- and three-way tankmixes of halosulfuron with trifluralin, s-metolachlor, or imazethapyr provided 85–100% control of redroot pigweed, 90–98% control of common ragweed, 97–100% control of common lambsquarters, 100% control of wild mustard, and 93–98% control of green foxtail. Weed density, weed biomass and white bean seed yields reflected the level of visible weed control.


Weed Science ◽  
1973 ◽  
Vol 21 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Stephen D. Miller ◽  
John D. Nalewaja

Weed control and sugarbeet (Beta vulgarisL.) injury from applications of methylm-hydroxycarbanilatem-methyl-carbanilate (phenmedipham) were influenced by additives, volume of additive, and species in both field and greenhouse experiments. Oils were more effective than the surfactant as additives to phenmedipham on green foxtail (Setaria virdis(L.) Beauv.), yellow foxtail (Setaria glauca(L.) Beauv.), redroot pigweed (Amaranthus retroflexusL.), or common lambsquarters (Chenopodium albumL.). Herbicidal activity of phenmedipham on kochia (Kochia scoparia(L.) Schrad.) or wild mustard (Brassica kaber(D.C.) L.C. Wheeler var.pinnatifida(Stokes) L.C. Wheeler) was not enhanced by any additive. Linseed oil (2.34 L/ha) enhanced the herbicidal activity of phenmedipham on green foxtail, yellow foxtail, and redroot pigweed more than petroleum (2.34 L/ha) or sunflower (Helianthus annusL.) oil (2.34 or 9.35 L/ha). However, linseed oil reduced the herbicidal activity of phenmedipham on kochia.


2013 ◽  
Vol 23 (3) ◽  
pp. 319-324
Author(s):  
Matthew A. Cutulle ◽  
Gregory R. Armel ◽  
James T. Brosnan ◽  
Dean A. Kopsell ◽  
William E. Klingeman ◽  
...  

Selective weed control in ornamental plant production can be difficult as many herbicides can cause unacceptable injury. Research was conducted to evaluate the tolerance of several ornamental species to applications of p-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides for the control of problematic weeds in ornamental production. Mestotrione (0.09, 0.18, and 0.36 lb/acre), tembotrione (0.08, 0.16, and 0.32 lb/acre), and topramezone (0.016, 0.032, and 0.064 lb/acre) were applied alone postemergence (POST) in comparison with the photosystem II-inhibiting herbicide, bentazon (0.5 lb/acre). All herbicide treatments, with the exception of the two highest rates of tembotrione, caused less than 8% injury to ‘Noble Upright’ japanese holly (Ilex crenata) and ‘Compactus’ burning bush (Euonymus alatus). Similarly, no herbicide treatment caused greater than 12% injury to ‘Girard’s Rose’ azalea (Azalea). Conversely, all herbicides injured flowering dogwood (Cornus florida) 10% to 23%. Mesotrione- and tembotrione-injured ‘Radrazz’ rose (Rosa) 18% to 55%, compared with only 5% to 18% with topramezone. ‘Siloam June Bug’ daylily (Hemerocallis) injury with topramezone and tembotrione was less than 10%. Topramezone was the only herbicide evaluated that provided at least 93% control of redroot pigweed (Amaranthus retroflexus) with all application rates by 4 weeks after treatment (WAT). Redroot pigweed was controlled 67% to 100% with mesotrione and tembotrione by 4 WAT, but this activity was variable among application rates. Spotted spurge (Chamaesyce maculata) was only adequately controlled by mesotrione applications at 0.18 and 0.36 lb/acre, whereas chamberbitter (Phyllanthus urinaria) was not controlled sufficiently with any herbicide evaluated in these studies. Yellow nutsedge (Cyperus esculentus) was suppressed 72% to 87% with mesotrione applications at 0.18 lb/acre or higher and with bentazon at 0.5 lb/acre by 4 WAT. All other herbicide treatments provided less than 58% control of yellow nutsedge. In the second study, ‘Patriot’ hosta (Hosta), ‘Green Sheen’ pachysandra (Pachysandra terminalis), autumn fern (Dryopteris erythrosora), ‘Little Princess’ spirea (Spiraea japonica), ‘Green Giant’ arborvitae (Thuja plicata), and ‘Rosea’ weigela (Weigela florida) displayed no response to topramezone when applied at 0.024 and 0.095 lb/acre. Since 10 ornamental species in our studies exhibited less than 10% herbicidal response with all rates of at least one HPPD-inhibiting herbicide then it is possible that these herbicides may provide selective POST weed control in ornamental production systems.


Weed Science ◽  
1971 ◽  
Vol 19 (3) ◽  
pp. 207-209 ◽  
Author(s):  
P. H. Grabouski

Eight herbicide postemergence treatments were applied to proso millet (Panicum milaceumL.) at three growth stages. The dimethylamine salt of (2,4-dichlorophenoxy)acetic acid (2,4-D) at 0.56 kg/ha had significantly higher grain yields than the weedy check. All herbicides except the amine of 2,4-D at 0.28 kg/ha appeared to injure proso millet plants by varying degrees; however, yields were not greatly affected. All herbicides gave excellent control of redroot pigweed (Amaranthus retroflexusL.) when applied to proso millet in the 4 to 6-leaf stage. Weed control was poorer when spraying was delayed until proso millet was in pre-boot and post-flower stages.


2009 ◽  
Vol 23 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Glenn J. Evans ◽  
Robin R. Bellinder ◽  
Martin C. Goffinet

Weed management can be difficult and expensive in organic agricultural systems. Because of the potentially high cost of the natural product herbicides vinegar and clove oil, their efficacy with regard to weed species growth stages needs to be determined. A further objective was to identify anatomical and morphological features of redroot pigweed and velvetleaf that influence the effectiveness of vinegar and clove oil. Research was conducted on greenhouse-grown cotyledon, two-leaf, and four-leaf redroot pigweed and velvetleaf. Dose–response treatments for vinegar included 150-, 200-, 250-, and 300-grain vinegar at 318 L/ha and at 636 L/ha. Clove oil treatments included 1.7, 3.4, 5.1, and 6.8% (v/v) dilutions of a clove oil product in water (318 L/ha), and a 1.7% (v/v) dilution in 200-grain vinegar (318 L/ha). An untreated control was included. Separate plantings of velvetleaf and pigweed were treated with vinegar or clove oil and were used to study anatomical and morphological differences between the two species. Redroot pigweed was easier to control with both products than velvetleaf. Whereas 200-grain vinegar applied at 636 L/ha provided 100% control (6 d after treatment [DAT]) and mortality (9 DAT) of two-leaf redroot pigweed, this same treatment on two-leaf velvetleaf provided only 73% control and 18% mortality. The obtuse leaf blade angle in velvetleaf moved product away from the shoot tip, whereas in pigweed, the acute leaf blade angle, deep central leaf vein, and groove on the upper side of the leaf petiole facilitated product movement toward the stem axis and shoot tip. For both species, and at all application timings, 150-grain vinegar at 636 L/ha provided control equal to that of 300-grain vinegar at 318 L/ha. As growth stage advanced, control and biomass reduction decreased and survival increased. Application timing will be critical to maximizing weed control with vinegar and clove oil.


Sign in / Sign up

Export Citation Format

Share Document