Use of a Rolled-rye Cover Crop for Weed Suppression in No-Till Soybeans

2010 ◽  
Vol 24 (3) ◽  
pp. 253-261 ◽  
Author(s):  
Ruth A. Mischler ◽  
William S. Curran ◽  
Sjoerd W. Duiker ◽  
Jeffrey A. Hyde

Cover crop management with a roller/crimper might reduce the need for herbicide. Weed suppression from a rolled cereal rye cover crop was compared to no cover crop with and without postemergence herbicide application in no-till soybean. The experiment was designed as a two-way factorial with rye termination and soybean planting date as the first factor and weed control treatment as the second. Cereal rye was drill-seeded in late September and managed using glyphosate followed by a roller/crimper in the spring. Soybean was no-till seeded after rolling and glyphosate was applied postemergence about 6 wk after planting to half the plots. Rye biomass doubled when delaying rye kill by 10 to 20 d. Weed density and biomass were reduced by the rye cover crop in all site–location combinations except one, but delaying rye kill and soybean planting date only reduced both weed density and biomass at a single location. The cover crop mulch provided weed control similar to the postemergence herbicide in two of four locations. Treatments did not affect soybean grain yield in 2007. In 2008, yield at Landisville with rye alone was equal to those yields receiving the postemergence herbicide, whereas at Rock Springs, it was equivalent or less. The net added cost of a rye cover crop was $123 ha−1with or $68.50 ha−1without a postemergence herbicide application. A rolled-rye cover crop sometimes provided acceptable weed control, but weed control alone did not justify the use of the cover crop. The potential for reduced herbicide use and other ecosystem services provided by a cover crop justify further refinement and research in this area.

2019 ◽  
Vol 35 (6) ◽  
pp. 599-607 ◽  
Author(s):  
Sarah J. Pethybridge ◽  
Bryan J. Brown ◽  
Julie R. Kikkert ◽  
Matthew R. Ryan

AbstractWhite mold caused by the fungus, Sclerotinia sclerotiorum is a devastating disease of soybean (Glycine max) and other leguminous crops, including dry bean (Phaseolus vulgaris). Previous research has demonstrated that no-till planting soybean into rolled–crimped cereal rye residue can enhance weed management, improve soil health and reduce labor requirements in organic production. However, there are limited data on the effects of cereal rye residue on white mold suppression in no-till planted soybean and dry bean. Two field trials were conducted in 2016–2017 (Year 1) and repeated in 2017–2018 (Year 2) to evaluate the potential of cereal rye cover crop residue to suppress white mold in these crops. In each trial (soybean and dry bean), the experimental design was a randomized complete block with two treatments: (1) rolled–crimped cereal rye residue and (2) no cover crop control. Treatment effects on plant population, biomass and yield components varied between the main crops. Compared with the control treatment, cereal rye residue reduced the incidence of white mold in soybean in both years and in dry bean in Year 2. The reduction in white mold in cereal rye residue plots was due to a combination of (1) decreased sclerotial germination (no stipes formed) and (2) increased nonfunctional sclerotial germination defined here as sclerotia that germinated but produced stipes without the expanded cup where asci containing ascospores are formed. Weed density and biomass were lower in cereal rye residue plots in soybean and dry bean, except in Year 1 in soybean when weed biomass was low in both treatments. Our findings indicate that cereal rye residue could help organic and conventional farmers manage white mold in no-till planted soybean and dry bean. Germination of sclerotia resulting in nonfunctional apothecia could potentially exhaust soilborne inoculum in the upper soil profile and reduce infections in subsequent crops.


Weed Science ◽  
2012 ◽  
Vol 60 (4) ◽  
pp. 624-633 ◽  
Author(s):  
Eric A. Nord ◽  
Matthew R. Ryan ◽  
William S. Curran ◽  
David A. Mortensen ◽  
Steven B. Mirsky

Knowledge of weed emergence periodicity can inform the timing and choice of weed management tactics. We tested the effects of weed management system (conventional [CNV] and herbicide-free [HF]), timing of rye sowing (two dates), timing of soybean planting (5 planting dates, 3 in each system), and supplemental control (with and without) on weed suppression and weed community composition in soybean no-till planted into a cereal rye cover crop. Cereal rye was terminated with a roller-crimper and herbicide (CNV) or with a roller-crimper alone (HF), and supplemental weed control was achieved with a postemergence glyphosate application (CNV) or with interrow high-residue cultivation (HF). Supplemental control with glyphosate in CNV was more effective than high-residue cultivation in HF. When soybean was planted on the same date, CNV resulted in less weed biomass and a more even community composition, whereas HF resulted in greater weed biomass, dominated by common ragweed. When we controlled for cereal rye biomass and compared the effects of cereal rye sowing and termination timing within each system, earlier management reduced weed biomass in HF, but tended to increase weed biomass in CNV. Our results suggest the ability to control emerged weeds prior to soybean planting is an important factor that influences the optimal cereal rye cover crop management timing for weed suppression.


2017 ◽  
Vol 31 (2) ◽  
pp. 320-329 ◽  
Author(s):  
Gladis M. Zinati ◽  
Rita Seidel ◽  
Alison Grantham ◽  
Jeff Moyer ◽  
Victoria J. Ackroyd ◽  
...  

A cereal rye cover crop mulch can suppress summer annual weeds early in the soybean growing season. However, a multi-tactic weed management approach is required when annual weed seedbanks are large or perennial weeds are present. In such situations, the weed suppression from a cereal rye mulch can be supplemented with the use of high-residue cultivators which can prolong the weed-free period during soybean growth. Research trials were conducted to determine the optimum timing of high-residue cultivation for weed control in rolled-crimped cereal rye mulches. Treatments included three cultivation timings with a high-residue cultivator: early (3-4 wk after soybean planting (WAP)), intermediate (5-6 WAP), and late (7-8 WAP), a weed-free and no-cultivation control. Crop and weed measurement included cereal rye biomass, weed biomass, soybean population and biomass, and yield. Cereal rye biomass was 50% lower and weed biomass was three times greater in 2011 than in 2010 and 2012 due to 2011 being a dry year. There was no significant effect of cultivation timing on soybean population when compared to no-cultivation or hand-weeded treatments. While cultivation reduced weed biomass by 67% compared to no-cultivation, soybean yield was only improved by 12% in early and late cultivation treatments and 22% in intermediate cultivation treatment when compared to no-cultivation. Effective strategies for improving weed management by integrating the use of a high-residue cultivator in no-till organic systems could help existing organic field crop producers to reduce tillage while also encourage adoption of organic crop production by conventional growers who prefer reduced-tillage systems. Unlike traditional organic cultivation equipment, therefore, optimal timing of cultivation should be delayed several weeks in organic cover crop-based no-till planted soybean production as compared to the typical tillage-based approach to ensure both weed control and optimal yield.


1997 ◽  
Vol 11 (3) ◽  
pp. 515-519 ◽  
Author(s):  
Julio A. Scursoni ◽  
Emilio H. Satorre

The objective of this paper was to evaluate the effect of preplant applications of trifluralin on barley stand and yield, and control of grass weeds in field experiments during 1992 and 1993. Factors examined were: (1) crop planting patterns (conventional drill with rows 15 cm apart and deep-seeder drill with rows 25 cm apart), (2) herbicide application times (22 d before sowing and immediately before sowing), and (3) herbicide application. During 1993, hand-weeded plots also were established. Trifluralin applied preplant at 528 g ai/ha reduced weed density and biomass. Weed control was higher under conventional planting than under the deep planting pattern, and there was no effect of the time of application on herbicide efficacy. There was no herbicide injury to the crop, and grain yield was higher in treated than in untreated plots due to successful weed control.


Weed Science ◽  
2011 ◽  
Vol 59 (3) ◽  
pp. 380-389 ◽  
Author(s):  
S. B. Mirsky ◽  
W. S. Curran ◽  
D. M. Mortenseny ◽  
M. R. Ryany ◽  
D. L. Shumway

Integrated weed management tactics are necessary to develop cropping systems that enhance soil quality using conservation tillage and reduced herbicide or organic weed management. In this study, we varied planting and termination date of two cereal rye cultivars (‘Aroostook’ and ‘Wheeler’) and a rye/hairy vetch mixture to evaluate cover-crop biomass production and subsequent weed suppression in no-till planted soybean. Cover crops were killed with a burn-down herbicide and roller-crimper and the weed-suppressive effects of the remaining mulch were studied. Cover-crop biomass increased approximately 2,000 kg ha−1from latest to earliest fall planting dates (August 25–October 15) and for each 10-d incremental delay in spring termination date (May 1–June 1). Biomass accumulation for cereal rye was best estimated using a thermal-based model that separated the effects of fall and spring heat units. Cultivars differed in their total biomass accumulation; however, once established, their growth rates were similar, suggesting the difference was mainly due to the earlier emergence of Aroostook rye. The earlier emergence of Aroostook rye may have explained its greater weed suppression than Wheeler, whereas the rye/hairy vetch mixture was intermediate between the two rye cultivars. Delaying cover-crop termination reduced weed density, especially for early- and late-emerging summer annual weeds in 2006. Yellow nutsedge was not influenced by cover-crop type or the timing of cover-crop management. We found that the degree of synchrony between weed species emergence and accumulated cover-crop biomass played an important role in defining the extent of weed suppression.


2018 ◽  
Vol 32 (5) ◽  
pp. 623-632 ◽  
Author(s):  
Andrew J. Price ◽  
Jacob P. Williams ◽  
Leah A. Duzy ◽  
J. Scott McElroy ◽  
Elizabeth A. Guertal ◽  
...  

AbstractA 3-yr watermelon experiment was established in fall 2013 to evaluate cover crop, polyethylene mulch, tillage, and herbicide application components for weed control, yield, and profitability. Conservation tillage, either with a cereal rye cover crop alone or integrated with polyethylene mulch, was compared to the standard industry practice of conventional tillage with bedded polyethylene mulch. The study also used a non-bedded conventional tillage system without polyethylene to determine polyethylene and cover crop residue effects. Within each of the four systems, herbicide treatments comprised halosulfuron applied (1) at 26.3 g ai ha–1PRE, (2) at 26.3 g ai ha–1POST, or (3) sequentially at 26.3 g ai ha–1PRE and POST. Each system also had a nontreated control. In addition, clethodim was applied in all plots twice POST at 140 g ai ha–1, except for nontreated in each system. In 2014, polyethylene or cereal rye cover crop effectively controlled tall morningglory, coffee senna, and carpetweed early season in nontreated plots, whereas the integration of the two was effective at controlling common purslane. Tall morningglory and purslane control was insufficient late season regardless of production system and herbicide application. In 2015, polyethylene effectively controlled cutleaf eveningprimrose, sicklepod, and arrowleaf sida early season in nontreated plots. Yellow nutsedge control was insufficient late season regardless of production system and herbicide application. Utilizing sequential halosulfuron applications did not increase weed control over PRE or POST alone in all years. Polyethylene use resulted in yields higher than systems without in all years. Across all 3 yr, net returns were highest for polyethylene mulch systems. The results of this experiment underscore the need for more progress in developing integrated conservation systems for watermelon production. Effective herbicides, low-disturbance cultivation, and/or hand weeding are most likely the key to success in conservation specialty crop systems.


Weed Science ◽  
2019 ◽  
Vol 67 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Erin R. Haramoto ◽  
Robert Pearce

AbstractWeed management in tobacco (Nicotiana tabacumL.) is accomplished primarily with soil-residual herbicides, cultivation, and hand removal. Management practices that reduce weed emergence, like reduced tillage and cover crop mulches, may improve weed management efficacy. Depending on cover-cropping goals, growers face trade-offs in species selection and management priorities—producing weed-suppressive mulches may lead to transplanting difficulties and soil-residual herbicide interception. Managing more complex cover crop mixtures may result in different challenges. We established on-farm trials across 4 site-years to study impacts of cover crop composition [wheat (Triticum aestivumL.) monoculture or mixture], termination treatment (early or late chemical termination or removing aboveground biomass), and soil-residual herbicides on weed density and biomass. The cover crop mixture contained cereal rye (Secale cerealeL.), crimson clover (Trifolium incarnatumL.), and hairy vetch (Vicia villosaRoth.), with canola (Brassica napusL.) at 1 site-year. The mixture typically produced more biomass than monoculture wheat, although composition had few impacts on weed density or biomass. With residual herbicides, termination treatment had few impacts on weed density, suggesting that residues did not adversely affect herbicide efficacy. Without residual herbicides, early-season weed density was often higher following the late-terminated cover crop compared with other termination treatments, though midseason weed density was typically lower. When termination treatment affected final weed biomass, it was lower following late termination, with one exception—crop establishment was reduced at 1 site-year, leading to reduced weed–crop competition and greater weed biomass. Our results suggest that growers can use mixtures and, if well-timed to a rainfall event for incorporation, still effectively use soil-residual herbicides to maintain adequate weed control in tobacco regardless of how the cover crop is managed. Later termination, resulting in more residue, may lead to less weed biomass accumulation in the absence of herbicide use.


Author(s):  
Silvia Fogliatto ◽  
Lorenzo Patrucco ◽  
Fernando De Palo ◽  
Barbara Moretti ◽  
Marco Milan ◽  
...  

A field study was carried out in 2017 and 2018 in two Italian rice farms (at Livorno Ferraris and Rovasenda) to assess the effect of using cover crops as green mulching on weed control and rice yield. In each site, three different rice fields were sown after rice harvest with either Vicia villosa, Lolium multiflorum, or a mixture of both (V. villosa 40% + L. multiflorum 60%); at Rovasenda a small percentage of Brassica napus and Triticale was also present in the mixture. An additional field at both sites without cover crop was considered as a control reference. Rice was broadcasted sown within the cover crop in May. After few days, the cover crop was terminated in half of each field using a roller-crimper, while in the other half it was terminated by shredding. Within 10 days, the fields were flooded for about a week to promote the degradation of the cover crop biomass. Then, the fields were cultivated in flooding conditions without further weed control. Weed density and weed cover were evaluated thrice during the growing season. At harvest, rice yield and harvest index were determined. Mixed nested ANOVAs were performed for each site to assess the effect of cover crop species, termination technique, and the interaction between cover crop and year. L. multiflorum showed a high biomass before termination, while V. villosa had a more variable development. At Rovasenda, V. villosa growth was limited because of the combination of scarce emergence due to sod-seeding and frost damage. In general, green mulching significantly affected weed density. The best weed suppression was observed with L. multiflorum and mix at Rovasenda, with values of weed density <40 plants m-2 recorded in 2018. At both sites, rice yield was variable in the two years. The highest rice yield (>5 t ha-1) was observed in 2018 in the shredded mixture at Rovasenda and in V. villosa at Livorno Ferraris in 2017. Generally, control fields showed lower yields (1-3 t ha-1) at both sites. The termination methods did not significantly affect both weed density and rice yield. The results highlighted that green mulching could reduce weed infestations, even though alone is not able to completely avoid weed development. Some critical issues of the technique were observed, such as the need of a good cover crop establishment, that eventually results in abundant biomass production and significant weed suppression.   Highlights - Green mulching reduces weed pressure but it should be integrated with other weed control techniques. - Hairy vetch showed poor establishment because of the combination of scarce emergence due to sod-seeding and low temperatures. - Italian ryegrass was more tolerant to low temperatures and showed a good cover that contained weed growth. - Cover crop mixture showed variable results with higher suppression probably related to the number of cover crop species present in the mixture. - The termination methods (crimping and shredding) did not affect weed density and rice yield.


2020 ◽  
Vol 2 ◽  
Author(s):  
Kurt M. Vollmer ◽  
Mark J. VanGessel ◽  
Quintin R. Johnson ◽  
Barbara A. Scott

Cereal rye as a cover crop is often used to improve soil health and as part of integrated weed management programs. Despite this, cereal rye biomass is often not managed for optimal weed suppression. This study evaluated the effects of managing cereal rye as part of an integrated weed management strategy in soybean. Factors consisted of levels of cereal rye management (no cereal rye, no nitrogen, or 20 kg/ha of nitrogen); cereal rye termination timing (20 or 10 d before soybean planting); and residual herbicide treatment applied at cereal rye termination (with or without). Winter annual weed control with cereal rye was generally greater compared to no cereal rye. Winter annual weed control was consistently better when cereal rye was terminated at 20 d before soybean planting compared to 10 d; while summer annual weed control was improved if termination was delayed. Effect of cereal rye management on summer annual weed control varied by weed species. In the absence of residual herbicides, Palmer amaranth control responded to the different levels of cereal rye management. However, morningglory spp. only responded to rye with supplemental N applications. Large crabgrass control was similar for treatments containing cereal rye, regardless of nitrogen input. Our results demonstrate the importance of cover crop management when incorporating cereal rye into an integrated weed management program for soybean.


2021 ◽  
pp. 1-40
Author(s):  
Connor L. Hodgskiss ◽  
Bryan G. Young ◽  
Shalamar D. Armstrong ◽  
William G. Johnson

Cover crops can be utilized to suppress weeds via direct competition for sunlight, water, and soil nutrients. Research was conducted to determine if cover crops can be used in label mandated buffer areas in 2,4-D-resistant soybean cropping systems. Delaying termination of cover crops containing cereal rye to at, or after, soybean planting resulted in a 25 to over 200 percentage point increase in cover crop biomass compared to a control treatment. Cover crops generally improved horseweed control when 2,4-D was not used. Cover crops reduced grass densities up to 54% at four of six site-years when termination was delayed to after soybean planting. Cover crops did not reduce giant ragweed densities. Cover crops reduced waterhemp densities by up to 45%. Cover crops terminated at, or after planting were beneficial within buffer areas for control of grassess and waterhemp, but not giant ragweed. Yield reductions of 14 to 41% occurred when cover crop termination was delayed to after soybean planting at three of six site-years. Terminating the cover crops at planting time provided suppression of grasses and waterhemp within buffer areas and had similar yield to the highest yielding treatment in five out of six site-years.


Sign in / Sign up

Export Citation Format

Share Document