Utilizing Cover Crops for Weed Suppression within Buffer Areas of 2,4-D-Resistant Soybean

2021 ◽  
pp. 1-40
Author(s):  
Connor L. Hodgskiss ◽  
Bryan G. Young ◽  
Shalamar D. Armstrong ◽  
William G. Johnson

Cover crops can be utilized to suppress weeds via direct competition for sunlight, water, and soil nutrients. Research was conducted to determine if cover crops can be used in label mandated buffer areas in 2,4-D-resistant soybean cropping systems. Delaying termination of cover crops containing cereal rye to at, or after, soybean planting resulted in a 25 to over 200 percentage point increase in cover crop biomass compared to a control treatment. Cover crops generally improved horseweed control when 2,4-D was not used. Cover crops reduced grass densities up to 54% at four of six site-years when termination was delayed to after soybean planting. Cover crops did not reduce giant ragweed densities. Cover crops reduced waterhemp densities by up to 45%. Cover crops terminated at, or after planting were beneficial within buffer areas for control of grassess and waterhemp, but not giant ragweed. Yield reductions of 14 to 41% occurred when cover crop termination was delayed to after soybean planting at three of six site-years. Terminating the cover crops at planting time provided suppression of grasses and waterhemp within buffer areas and had similar yield to the highest yielding treatment in five out of six site-years.

2016 ◽  
Vol 26 (4) ◽  
pp. 409-416 ◽  
Author(s):  
Raymond Kruse ◽  
Ajay Nair

Cover crops can be used as a sustainable weed management tool in crop production systems. Cover crops have the ability to suppress weeds, reduce soil erosion, increase soil organic matter, and improve soil physical, chemical, and biological properties. In the north-central region of the United States, including Iowa, much cover crop research has been conducted in row crop systems, mainly with corn (Zea mays) and soybean (Glycine max) where cover crops are planted at the end of the growing season in September or October. There is little information available on the use of cover crops in vegetable cropping systems, particularly on the use of summer cover crops for fall vegetable production. The choice of the cover crop will significantly impact the entire fall vegetable production enterprise. Vegetable growers need information to identify the right cover crop for a particular slot in the cropping system and to understand how cover crops would affect weed suppression, soil properties, and successive vegetable crop yield. The time interval between cover crop termination and vegetable planting critically affects the growth and successive yield of the vegetable crop. This study investigated how short-duration summer cover crops impact weed suppression, soil properties, and ‘Adriana’ lettuce (Lactuca sativa) yield. The study also examined appropriate planting times of lettuce transplants after soil incorporation of cover crops. The experimental design was a randomized complete block split-plot design with four replications. Whole plots consisted of cover crop treatments: ‘Mancan’ buckwheat (Fagopyrum esculentum), ‘Iron & Clay’ cowpea/southernpea (Vigna unguiculata), black oats (Avena strigosa), ‘Grazex II’ sorghum-sudangrass (Sorghum bicolor ssp. drummondii), and a control (no-cover crop) where weeds were left to grow unchecked. The subplot treatment consisted of two lettuce transplanting times: planted immediately or 8 days after cover crop soil incorporation. Fall-planted butterhead lettuce was used. Data were collected on cover crop biomass, weed biomass, soil nutrient concentration, lettuce growth, and yield. All cover crops significantly reduced weed biomass during the fallow period as compared with the control treatment. Highest degree of weed suppression (90% as compared with the no-cover crop control treatment) was provided by buckwheat. Southernpea, a legume, increased soil nitrogen (N) concentration and contributed to higher lettuce yield and improved quality. Southernpea also enhanced lettuce growth and led to an earlier harvest than other treatments. Sorghum-sudangrass showed evidence of detrimental effects to the marketable lettuce crop. This was not due to N immobilization but presumably due to alleopathic properties. There is no clear pattern within any cover crop treatment that lettuce planting time following cover crop termination affects plant growth; however, planting early or soon after cover crop incorporation ensures more growing degree days and daylight, thus leading to timely harvest of a higher quality product. This study demonstrates that cover crops can successfully be integrated into vegetable cropping systems; however, cover crop selection is critical.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 319 ◽  
Author(s):  
Laura Vincent-Caboud ◽  
Léa Vereecke ◽  
Erin Silva ◽  
Joséphine Peigné

Organic farming relies heavily on tillage for weed management, however, intensive soil disturbance can have detrimental impacts on soil quality. Cover crop-based rotational tillage (CCBRT), a practice that reduces the need for tillage and cultivation through the creation of cover crop mulches, has emerged as an alternative weed management practice in organic cropping systems. In this study, CCBRT systems using cereal rye and triticale grain species are evaluated with organic soybean directly seeded into a rolled cover crop. Cover crop biomass, weed biomass, and soybean yields were evaluated to assess the effects of cereal rye and winter triticale cover crops on weed suppression and yields. From 2016 to 2018, trials were conducted at six locations in Wisconsin, USA, and Southern France. While cover crop biomass did not differ among the cereal grain species tested, the use of cereal rye as the cover crop resulted in higher soybean yields (2.7 t ha−1 vs. 2.2 t ha−1) and greater weed suppression, both at soybean emergence (231 vs. 577 kg ha−1 of weed biomass) and just prior to soybean harvest (1178 vs. 1545 kg ha−1). On four out of six sites, cover crop biomass was lower than the reported optimal (<8000 kg ha−1) needed to suppress weeds throughout soybean season. Environmental conditions, in tandem with agronomic decisions (e.g., seeding dates, cultivar, planters, etc.), influenced the ability of the cover crop to suppress weeds regardless of the species used. In a changing climate, future research should focus on establishing flexible decision support tools based on multi-tactic cover crop management to ensure more consistent results with respect to cover crop growth, weed suppression, and crop yields.


Author(s):  
John M. Wallace ◽  
Sarah Isbell ◽  
Ron Hoover ◽  
Mary Barbercheck ◽  
Jason Kaye ◽  
...  

Abstract Organic grain producers are interested in interseeding cover crops into corn (Zea mays L.) in regions that have a narrow growing season window for post-harvest establishment of cover crops. A field experiment was replicated across 2 years on three commercial organic farms in Pennsylvania to compare the effects of drill- and broadcast-interseeding to standard grower practices, which included post-harvest seeding cereal rye (Secale cereale L.) at the more southern location and winter fallow at the more northern locations. Drill- and broadcast-interseeding treatments occurred just after last cultivation and used a cover crop mixture of annual ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot] + orchardgrass (Dactylis glomerata L.) + forage radish (Raphanus sativus L. ssp. longipinnatus). Higher mean fall cover crop biomass and forage radish abundance (% of total) was observed in drill-interseeding treatments compared with broadcast-interseeding. However, corn grain yield and weed suppression and N retention in late-fall and spring were similar among interseeding treatments, which suggests that broadcast-interseeding at last cultivation has the potential to produce similar production and conservation benefits at lower labor and equipment costs in organic systems. Post-harvest seeding cereal rye resulted in greater spring biomass production and N retention compared with interseeded cover crops at the southern location, whereas variable interseeding establishment success and dominance of winter-killed forage radish produced conditions that increased the likelihood of N loss at more northern locations. Additional research is needed to contrast conservation benefits and management tradeoffs between interseeding and post-harvest establishment methods.


2014 ◽  
Vol 7 ◽  
pp. ASWR.S13861 ◽  
Author(s):  
Corey G. Lacey ◽  
Shalamar D. Armstrong

Little is known about the timing and quantity of nitrogen (N) mineralization from cover crop residue following cover crop termination. Therefore, the objective of this study was to examine the impact of cover crop species on the return of fall applied N to the soil in the spring following chemical and winter terminations. Fall N was applied (200 kg N ha−1) into a living stand of cereal rye, tillage radish, and control (no cover crop). After chemical termination in the spring, soil samples were collected weekly and were analyzed for inorganic N (NO3-N and NH4-N) to investigate mineralization over time. Cereal rye soil inorganic N concentrations were similar to that of the control in both the spring of 2012 and 2013. Fall N application into tillage radish, cereal rye, and control plots resulted in an average 91, 57, and 66% of the fall N application rate as inorganic N in the spring at the 0-20 cm depth, respectively. The inclusion of cover crops into conventional cropping systems stabilized N at the soil surface and has the potential to improve the efficiency of fall applied N.


2012 ◽  
Vol 26 (4) ◽  
pp. 818-825 ◽  
Author(s):  
Zachary D. Hayden ◽  
Daniel C. Brainard ◽  
Ben Henshaw ◽  
Mathieu Ngouajio

Winter annual weeds can interfere directly with crops and serve as alternative hosts for important pests, particularly in reduced tillage systems. Field experiments were conducted on loamy sand soils at two sites in Holt, MI, between 2008 and 2011 to evaluate the relative effects of cereal rye, hairy vetch, and rye–vetch mixture cover crops on the biomass and density of winter annual weed communities. All cover crop treatments significantly reduced total weed biomass compared with a no-cover-crop control, with suppression ranging from 71 to 91% for vetch to 95 to 98% for rye. In all trials, the density of nonmustard family broadleaf weeds was either not suppressed or suppressed equally by all cover crop treatments. In contrast, the density of mustard family weed species was suppressed more by rye and rye–vetch mixtures than by vetch. Cover crops were more consistently suppressive of weed dry weight per plant than of weed density, with rye-containing cover crops generally more suppressive than vetch. Overall, rye was most effective at suppressing winter annual weeds; however, rye–vetch mixtures can match the level of control achieved by rye, in addition to providing a potential source of fixed nitrogen for subsequent cash crops.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Barbara Baraibar ◽  
Mitchell C. Hunter ◽  
Meagan E. Schipanski ◽  
Abbe Hamilton ◽  
David A. Mortensen

Interest in planting mixtures of cover crop species has grown in recent years as farmers seek to increase the breadth of ecosystem services cover crops provide. As part of a multidisciplinary project, we quantified the degree to which monocultures and mixtures of cover crops suppress weeds during the fall-to-spring cover crop growing period. Weed-suppressive cover crop stands can limit weed seed rain from summer- and winter-annual species, reducing weed population growth and ultimately weed pressure in future cash crop stands. We established monocultures and mixtures of two legumes (medium red clover and Austrian winter pea), two grasses (cereal rye and oats), and two brassicas (forage radish and canola) in a long fall growing window following winter wheat harvest and in a shorter window following silage corn harvest. In fall of the long window, grass cover crops and mixtures were the most weed suppressive, whereas legume cover crops were the least weed suppressive. All mixtures also effectively suppressed weeds. This was likely primarily due to the presence of fast-growing grass species, which were effective even when they were seeded at only 20% of their monoculture rate. In spring, weed biomass was low in all treatments due to winter kill of summer-annual weeds and low germination of winter annuals. In the short window following silage corn, biomass accumulation by cover crops and weeds in the fall was more than an order of magnitude lower than in the longer window. However, there was substantial weed seed production in the spring in all treatments not containing cereal rye (monoculture or mixture). Our results suggest that cover crop mixtures require only low seeding rates of aggressive grass species to provide weed suppression. This creates an opportunity for other species to deliver additional ecosystem services, though careful species selection may be required to maintain mixture diversity and avoid dominance of winter-hardy cover crop grasses in the spring.


2010 ◽  
Vol 24 (3) ◽  
pp. 253-261 ◽  
Author(s):  
Ruth A. Mischler ◽  
William S. Curran ◽  
Sjoerd W. Duiker ◽  
Jeffrey A. Hyde

Cover crop management with a roller/crimper might reduce the need for herbicide. Weed suppression from a rolled cereal rye cover crop was compared to no cover crop with and without postemergence herbicide application in no-till soybean. The experiment was designed as a two-way factorial with rye termination and soybean planting date as the first factor and weed control treatment as the second. Cereal rye was drill-seeded in late September and managed using glyphosate followed by a roller/crimper in the spring. Soybean was no-till seeded after rolling and glyphosate was applied postemergence about 6 wk after planting to half the plots. Rye biomass doubled when delaying rye kill by 10 to 20 d. Weed density and biomass were reduced by the rye cover crop in all site–location combinations except one, but delaying rye kill and soybean planting date only reduced both weed density and biomass at a single location. The cover crop mulch provided weed control similar to the postemergence herbicide in two of four locations. Treatments did not affect soybean grain yield in 2007. In 2008, yield at Landisville with rye alone was equal to those yields receiving the postemergence herbicide, whereas at Rock Springs, it was equivalent or less. The net added cost of a rye cover crop was $123 ha−1with or $68.50 ha−1without a postemergence herbicide application. A rolled-rye cover crop sometimes provided acceptable weed control, but weed control alone did not justify the use of the cover crop. The potential for reduced herbicide use and other ecosystem services provided by a cover crop justify further refinement and research in this area.


2020 ◽  
pp. 1-29
Author(s):  
Connor L. Hodgskiss ◽  
Bryan G. Young ◽  
Shalamar D. Armstrong ◽  
William G. Johnson

Abstract As herbicide-resistant weeds become more problematic, producers will consider the use of cover crops to suppress weeds. Weed suppression from cover crops may be especially in the label-mandated buffer areas of dicamba-resistant soybean where dicamba use is not allowed. Three cover crops terminated at three timings with three herbicide strategies were evaluated for their effect on weed suppression in dicamba-resistant soybean. Delaying termination to at soybean planting, or after, and using a cereal rye or cereal rye + crimson clover increased cover crop biomass by at least 40% compared to terminating early or using a crimson clover only cover crop. Densities of problematic weed species were evaluated in early-summer prior to a blanket POST application. Plots with cereal rye had 75% less horseweed compared to crimson clover at two of four site-years. Cereal rye or the mix cover crop terminated at, or after soybean planting reduced waterhemp densities by 87% compared to early termination timings of crimson clover and the earliest termination timing of the mix at one of two site-years. Cover crops were not as effective in reducing waterhemp densities as they were in reducing horseweed densities. This difference is due to a divergence in emergence patterns; waterhemp emergence generally peaks after termination of the cover crop while horseweed emergence coincides with establishment and rapid vegetative growth of cereal rye. Cover crops alone were generally not as effective as using a high biomass cover crop combined with herbicide strategy that contained dicamba and residual herbicides. However, within label-mandated buffer areas where dicamba cannot be used, a cover crop containing cereal rye with delayed termination to at soybean planting combined with residual herbicides could be utilized to improve suppression of horseweed and waterhemp.


2020 ◽  
Vol 34 (6) ◽  
pp. 787-793
Author(s):  
Stephanie A. DeSimini ◽  
Kevin D. Gibson ◽  
Shalamar D. Armstrong ◽  
Marcelo Zimmer ◽  
Lucas O.R. Maia ◽  
...  

AbstractField experiments were conducted in 2017 and 2018 at two locations in Indiana to evaluate the influence of cover crop species, termination timing, and herbicide treatment on winter and summer annual weed suppression and corn yield. Cereal rye and canola cover crops were terminated early or late (2 wk before or after corn planting) with a glyphosate- or glufosinate-based herbicide program. Canola and cereal rye reduced total weed biomass collected at termination by up to 74% and 91%, in comparison to fallow, respectively. Canola reduced horseweed density by up to 56% at termination and 57% at POST application compared to fallow. Cereal rye reduced horseweed density by up to 59% at termination and 87% at POST application compared to fallow. Canola did not reduce giant ragweed density at termination in comparison to fallow. Cereal rye reduced giant ragweed density by up to 66% at termination and 62% at POST application. Termination timing had little to no effect on weed biomass and density reduction in comparison to the effect of cover crop species. Cereal rye reduced corn grain yield at both locations in comparison to fallow, especially for the late-termination timing. Corn grain yield reduction up to 49% (4,770 kg ha–1) was recorded for cereal rye terminated late in comparison to fallow terminated late. Canola did not reduce corn grain yield in comparison to fallow within termination timing; however, late-terminated canola reduced corn grain yield by up to 21% (2,980 kg ha–1) in comparison to early-terminated fallow. Cereal rye can suppress giant ragweed emergence, whereas canola is not as effective at suppressing large-seeded broadleaves such as giant ragweed. These results also indicate that early-terminated cover crops can often result in higher corn grain yields than late-terminated cover crops in an integrated weed management program.


Weed Science ◽  
2017 ◽  
Vol 65 (3) ◽  
pp. 426-439 ◽  
Author(s):  
Jeffrey A. Liebert ◽  
Antonio DiTommaso ◽  
Matthew R. Ryan

Maximizing cereal rye biomass has been recommended for weed suppression in cover crop–based organic no-till planted soybean; however, achieving high biomass can be challenging, and thick mulch can interfere with soybean seed placement. An experiment was conducted from 2012 to 2014 in New York to test whether mixing barley and cereal rye would (1) increase weed suppression via enhanced shading prior to termination and (2) provide acceptable weed suppression at lower cover crop biomass levels compared with cereal rye alone. This experiment was also designed to assess high-residue cultivation as a supplemental weed management tool. Barley and cereal rye were seeded in a replacement series, and a split-block design with four replications was used with management treatments as main plots and cover crop seeding ratio treatments (barley:cereal rye, 0:100, 50:50, and 100:0) as subplots. Management treatments included high-residue cultivation and standard no-till management without high-residue cultivation. Despite wider leaves in barley, mixing the species did not increase shading, and cereal rye dominated cover crop biomass in the 50:50 mixtures in 2013 and 2014, representing 82 and 93% of the biomass, respectively. Across all treatments, average weed biomass (primarily common ragweed, giant foxtail, and yellow foxtail) in late summer ranged from 0.5 to 1.1 Mg ha−1in 2013 and 0.6 to 1.3 Mg ha−1in 2014, and weed biomass tended to decrease as the proportion of cereal rye, and thus total cover crop biomass, increased. However, soybean population also decreased by 29,100 plants ha−1for every 1 Mg ha−1increase in cover crop biomass in 2013 (P=0.05). There was no relationship between cover crop biomass and soybean population in 2014 (P=0.35). Soybean yield under no-till management averaged 2.9 Mg ha−1in 2013 and 2.6 Mg ha−1in 2014 and was not affected by cover crop ratio or management treatment. Partial correlation analyses demonstrated that shading from cover crops prior to termination explained more variation in weed biomass than cover crop biomass. Our results indicate that cover crop management practices that enhance shading at slightly lower cover crop biomass levels might reduce the challenges associated with excessive biomass production without sacrificing weed suppression in organic no-till planted soybean.


Sign in / Sign up

Export Citation Format

Share Document