ESTIMATION OF THE BREAKUP LENGTH FOR A PRESSURE-SWIRL SPRAY FROM THE EXPERIMENTALLY MEASURED SPRAY ANGLE

2009 ◽  
Vol 19 (3) ◽  
pp. 235-246 ◽  
Author(s):  
Seoksu Moon ◽  
Choongsik Bae ◽  
Essam F. Abo-Serie
Author(s):  
Elyas Rostami ◽  
Hossein Mahdavy Moghaddam

In this study, the atomization of heavy fuel oil (Mazut) and diesel fuel at different pressures is compared experimentally. Also, the effects of temperature on the Mazut fuel atomization are investigated experimentally. Mass flow rate, discharge coefficient, wavelength, liquid film thickness, ligament diameter, spray angle, breakup length, and sature mean diameter are obtained for the Mazut and diesel fuel. Fuels spray images at different pressures and temperatures are recorded using the shadowgraphy method and analyzed by the image processing technique. Error analysis is performed for the experiments, and the percentage of uncertainty for each parameter is reported. The experimental results are compared with the theoretical results. Also, Curves are proposed and plotted to predict changes in the behavior of atomization parameters. Diesel fuel has less viscosity than Mazut fuel. Diesel fuel has shorter breakup length, wavelength, liquid film thickness, and sature mean diameter than Mazut fuel at the same pressure. Diesel fuel has a larger spray angle and a larger discharge coefficient than Mazut fuel at the same pressure. As the pressure and temperature increase, fuel atomization improves. The viscosity of Mazut fuel is decreased by temperature increase. As the fuel injection pressure and temperature increase, breakup length, wavelength, liquid film thickness, and sature mean diameter decrease; also, spray angle increases.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tao Zhang ◽  
Bo Dong ◽  
Xun Zhou ◽  
Linan Guan ◽  
Weizhong Li ◽  
...  

Partial replacement of kerosene by ethanol in a gas turbine is regarded as a good way to improve the spray quality and reduce the fossil energy consumption. The present work is aimed at studying the spray characteristics of kerosene-ethanol blends discharging from a pressure-swirl nozzle. The spray cone angle, discharge coefficient, breakup length, and velocity distribution are obtained by particle image velocimetry, while droplet size is acquired by particle/droplet imaging analysis. Kerosene, E10 (10% ethanol, 90% kerosene), E20 (20% ethanol, 80% kerosene), and E30 (30% ethanol, 70% kerosene) have been considered under the injection pressure of 0.1–1 MPa. The results show that as injection pressure is increased, the discharge coefficient and breakup length decrease, while the spray cone angle, drop size, and spray velocity increase. Meanwhile, the drop size decreases and the spray velocity increases with ethanol concentration when the injection pressure is lower than 0.8 MPa. However, the spray characteristics are not affected obviously by the ethanol concentration when the injection pressure exceeds 0.8 MPa. A relation to breakup length for kerosene-ethanol blends is obtained. The findings demonstrate that the adding of ethanol into kerosene can promote atomization performance.


Author(s):  
X. F. Wang ◽  
A. H. Lefebvre

The spray characteristics of six simplex atomizers are examined in a pressure vessel using a standard light diffraction technique. Attention is focused on the effects of liquid properties, nozzle flow number, spray cone angle, and ambient air pressure on mean drop size and drop-size distribution. For all nozzles and all liquids it is found that continuous increase in air pressure above the normal atmospheric value causes the SMD to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the measurement technique employed and the various competing influences on the overall atomization process. The basic effect of an increase in air pressure is to improve atomization, but this trend is opposed by contraction of the spray angle which reduces the relative velocity between the drops and the surrounding air, and also increases the possibility of droplet coalescence.


Author(s):  
M. A. Benjamin ◽  
A. Mansour ◽  
U. G. Samant ◽  
S. Jha ◽  
Y. Liao ◽  
...  

A parametric experimental study has been conducted to measure the discharge coefficient, the flow number, the film thickness, the spray angle, the velocity coefficient and droplet size of a large-scale simplex nozzle using ultrasonic and optical techniques. Seventeen nozzle geometries have been studied for three mass flow rates. The large-scale nozzle provides adequate resolution for measurements of film thickness, spray angle, and droplet size. The experimental data collected have been used to derive new and improved correlations for nozzle flow and breakup parameters. It is found that the atomizer constant (ratio of total inlet area to product of the swirl chamber and orifice diameter) is the primary parameter affecting the atomizer performance. As the atomizer constant increases, the discharge and velocity coefficients increase and the spray angle decreases.


Author(s):  
Ashraf A. Ibrahim ◽  
Milind A. Jog

Pressure swirl or simplex atomizers are commonly used in a number of industrial applications for liquid atomization, including fuel injection systems for gas turbine engines, spray drying, and paint sprays. Computational modeling of the two-phase flow in the atomizer coupled with a non-linear analysis of instability of liquid sheet exiting from the atomizer has been carried out. The Volume-of-Fluid method is employed to determine the two-phase gas-liquid flow inside the atomizer. Results are validated using available experimental data for film thickness at exit, spray angle, and discharge coefficient. The predictions of breakup length using the non-linear model are compared with available experimental measurements which show excellent agreement. The effect of flow conditions and nozzle geometry on the flow field and sheet breakup are investigated. The coupled internal flow simulation and sheet instability analysis provides a comprehensive approach to modeling atomization from a pressure-swirl atomizer.


Author(s):  
Zulkifli Abdul Ghaffar ◽  
Salmiah Kasolang ◽  
Ahmad Hussein Abdul Hamid

A widely distributed spray is an important feature for an atomizer which is required in various applications such as gas cooling, gas turbine combustion, and fluidized bed granulator. Pressure-swirl atomizer is an example of atomizer which provides a wide spray angle through the swirling effect inside the atomizer. One of the important parameters affecting spray angle is atomizer geometrical constant, K. Another important parameter of pressure-swirl atomizer is discharge coefficient, Cd. Discharge coefficient describes the throughput of the liquid flow. An experimental test-rig was constructed to conduct the performance test of the atomizer. Acquired images were analysed using image-processing software. It was found that K has inverse relation with spray angle and direct relation with Cd. Prediction of spray angle and Cd using existing correlations also yields similar trends with the experimental results, but some parameters still need to be considered to perform an accurate prediction.


2007 ◽  
Vol 129 (4) ◽  
pp. 945-953 ◽  
Author(s):  
Ashraf A. Ibrahim ◽  
Milind A. Jog

Predictions of breakup length of a liquid sheet emanating from a pressure-swirl (simplex) fuel atomizer have been carried out by computationally modeling the two-phase flow in the atomizer coupled with a nonlinear analysis of instability of the liquid sheet. The volume-of-fluid (VOF) method has been employed to study the flow field inside the pressure-swirl atomizer. A nonlinear instability model has been developed using a perturbation expansion technique with the initial amplitude of the disturbance as the perturbation parameter to determine the sheet instability and breakup. The results for sheet thickness and velocities from the internal flow solutions are used as input in the nonlinear instability model. Computational results for internal flow are validated by comparing film thickness at exit, spray angle, and discharge coefficient with available experimental data. The predictions of breakup length show a good agreement with semiempirical correlations and available experimental measurements. The effect of elevated ambient pressure on the atomizer internal flow field and sheet breakup is investigated. A decrease in air core diameter is obtained at higher ambient pressure due to increased liquid-air momentum transport. Shorter breakup lengths are obtained at elevated air pressure. The coupled internal flow simulation and sheet instability analysis provides a comprehensive approach to modeling sheet breakup from a pressure-swirl atomizer.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 58
Author(s):  
Z A. Ghaffar ◽  
S Kasolang ◽  
Ahmad H. A. Hamid

Spray characteristics and internal flow structures of an atomizer are important parameters in indicating their performances. Both parameters are affected by the operating conditions and atomizer geometries. This study investigates the effect of operating parameters and atomizer geometries on spray angle, breakup length and gas core diameter of swirl effervescent atomizer. This work is conducted specifically to find the most critical parameters that will produce the required spray characteristics and internal flow structure. The atomizer performance tests were carried out using water as the working fluid and nitrogen gas as the atomizing agent. High-speed shadowgraph technique was utilized to record the videos of the spray and internal flow structures. The video recordings were converted to image sequences and analyzed using image processing software. Geometrical parameters were found to be more dominant for characterizing the resultant sprays, but operating conditions was more critical in affecting the internal flow structures. The widest spray angle (~25°) and shortest breakup length (~10mm) were observed at the high level of swirl-generating vane angle and discharge orifice diameter. Gas core diameter expanded up to 1.13mm at the high level of GLR.  


Sign in / Sign up

Export Citation Format

Share Document