EFFECT OF HEAT SPREADING ON THE PERFORMANCE OF HEAT SINK VIA VAPOR CHAMBER

Equipment ◽  
2006 ◽  
Author(s):  
Y. S. Chen ◽  
K. H. Chien ◽  
T. C. Hung ◽  
B. S Pei ◽  
C. C. Wang
2021 ◽  
Vol 163 ◽  
pp. 698-719
Author(s):  
A. Ghanbarpour ◽  
M.J. Hosseini ◽  
A.A. Ranjbar ◽  
M. Rahimi ◽  
R. Bahrampoury ◽  
...  
Keyword(s):  

Author(s):  
Vanessa Michels ◽  
Fernando H. Milanez ◽  
Marcia B. H. Mantelli
Keyword(s):  

Author(s):  
Koichi Mashiko ◽  
Masataka Mochizuki ◽  
Yuji Saito ◽  
Yasuhiro Horiuchi ◽  
Thang Nguyen ◽  
...  

Recently energy saving is most important concept for all electric products and production. Especially, in Data-Center cooling system, power consumption of current air cooling system is increasing. For not only improving thermal performance but also reducing electric power consumption of this system, liquid cooling system has been developed. This paper reports the development of cold plate technology and vapor chamber application by using micro-channel fin. In case of cold plate application, micro-channel fin technology is good for compact space design, high thermal performance, and easy for design and simulation. Another application is the evaporating surface for vapor chamber. The well-known devices for effective heat transfer or heat spreading with the lowest thermal resistance are heat pipes and vapor chamber, which are two-phase heat transfer devices with excellent heat spreading and heat transfer characteristics. Normally, vapor chamber is composed of sintered power wick. Vapor chamber container is mechanically supported by stamped pedestal or wick column or solid column, but the mechanical strength is not enough strong. So far, the application is limited in the area of low strength assembly. Sometime the mechanical supporting frame is design for preventing deformation. In this paper, the testing result of sample is described that thermal resistance between the heat source and the ambient can be improved approximately 0.1°C/W by using the micro-channel vapor chamber. Additionally, authors presented case designs using vapor chamber for cooling computer processors, and proposed ideas of using micro-channel vapor chamber for heat spreading to replace the traditional metal plate heat spreader.


Author(s):  
Garrett A. Glover ◽  
Yongguo Chen ◽  
Annie Luo ◽  
Herman Chu

The current work is a survey of applied applications of passive 2-phase technologies, such as heat pipe and vapor chamber, in heat sink designs with thin base for electronic cooling. The latest improvements of the technologies and manufacturing processes allow achievable heat sink base thickness of 3 mm as compared to around 5 mm previously. The key technical challenge has been on maintaining structural integrity for adequate hollow space for the working fluid vapor in order to retain high performance while reducing the thickness of the overall vapor chamber or flattened heat pipe. Several designs of thin vapor chamber base heat sink and embedded heat pipe heat sink from different vendors are presented for a moderate power density application of a 60 W, 13.2 mm square heat source. Numerous works have been published by both academia and commercial applications in studying the fundamental science of passive 2-phase flow technologies; their performance has been compared to solid materials, like aluminum and copper. These works have established the merits of using heat pipes and vapor chambers in electronic cooling. The intent of this paper is to provide a methodical approach to help to accelerate the process in evaluating the arrays of different commercial designs of these devices in our product design cycle. In this paper, the trade-offs between the different types of technologies are discussed for parameters such as performance advantages, physical attributes, and some cost considerations. This is a bake-off evaluation of the complete heat sink solutions from the various vendors and not a fundamental research of vapor chambers and heat pipes — for that, it is best left to the vendors and universities.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1368-1372 ◽  
Author(s):  
Daniel Henrique de Souza Obata ◽  
Thiago Antonini Alves ◽  
Márcio Antonio Bazani ◽  
Amarildo Tabone Paschoalini

In this research, a vapor chamber embedded in the base of a heat sink was experimentally analyzed for the application in thermal management of microelectronics. The vapor chamber was produced by a copper and molybdenum alloy with length of 240 mm, width of 54 mm, thickness of 3 mm, and capillary structures composed by copper screen meshes. The working fluid used was de-ionized water. The pure aluminum heat sink was cooled by air forced convection and the evaporator vapor chamber was heated using an electrical resistor simulating integrated circuit power dissipation. The experimental tests were done in a suction type wind tunnel with open return for a heat load varying from 20 to 80 W and for an airflow velocity varying from 1 to 4 m/s. The experimental results showed that the considered vapor chamber worked successfully, maintaining low operating temperature.


2017 ◽  
Vol 151 ◽  
pp. 1-10 ◽  
Author(s):  
Yong Tang ◽  
Lang Lin ◽  
Shiwei Zhang ◽  
Jian Zeng ◽  
Kairui Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document