OPTIMIZING CERAMIC KILN OPERATION UTILIZING INDUSTRIAL GAS TURBINE EXHAUST GASES

Clean Air ◽  
2004 ◽  
Vol 5 (3) ◽  
pp. 243-266
Author(s):  
L. M. Fletcher ◽  
D. K. Iatridis ◽  
A. N. Katsanevakis ◽  
A. A. Lappas ◽  
O. Monachos ◽  
...  
Author(s):  
V. Vassiliev ◽  
S. Irmisch ◽  
S. Florjancic

The key aspects for the reliable CFD modelling of exhaust diffusers are addressed in this paper. In order to identify adequate turbulence models a number of 2D diffuser configurations have been simulated using different turbulence models and results have been compared with measurements. An automated procedure for a time- and resource-efficient and accurate prediction of complex diffuser configuration is presented. The adequate definitions of boundary conditions for the diffuser simulation using this procedure are discussed. In the second part of this paper, the CFD procedure is being applied to investigate the role of secondary flow on axial diffusers. Prediction results are discussed and compared with available measurement data.


Author(s):  
R. Prakash ◽  
P. Sudhakar ◽  
N. V. Mahalakshmi

This paper presents the static pressure development and the effect of struts on the performance of an annular diffuser. A typical exhaust diffuser of an industrial gas turbine is annular with structural members, called struts, which extend radially from the inner to the outer annulus wall. An annular diffuser model, primarily intended for fundamental research, has been tested on a wind tunnel. Similar conditions that prevail in an industrial gas turbine have been generated in the diffuser. Measurements were made using a five holed Pitot probe. The research had been carried out to make a detailed investigation on the effect of struts and to advance computational and design tools for gas turbine exhaust diffusers.


Energy ◽  
2004 ◽  
Vol 29 (9-10) ◽  
pp. 1279-1284 ◽  
Author(s):  
A Amorelli ◽  
M.B Wilkinson ◽  
P Bedont ◽  
P Capobianco ◽  
B Marcenaro ◽  
...  

Author(s):  
Jeffrey R. Neyhouse ◽  
Jose M. Aurrecoechea ◽  
J. Preston Montague ◽  
John D. Lilley

Austenitic ductile iron castings have traditionally been used for gas turbine exhaust components that require castability, good machinability, low thermal expansion, and high strength at elevated temperatures. The achievement of optimum properties in austenitic ductile irons hinges on the ability of the foundry to produce nodular graphite in the microstructure throughout the component. In large, complex components, consistently producing nodular graphite is challenging. A high-nickel steel alloy that is suitable for sand castings has been recently developed for industrial gas turbine engine applications. The alloy exhibits similar mechanical and physical properties to austenitic ductile irons, but with improved processability and ductility. This alloy is weldable and exhibits no secondary graphite phase. This paper presents the results of a characterization program conducted on a 35% nickel, high-alloy steel. The results are compared with an austenitic ductile iron of similar composition. Tensile and creep properties from ambient temperature to 760°C (1400°F) are included, along with fabrication experience gained during the manufacture of several sand cast components at Solar Turbines Incorporated. The alloy has been successfully adopted for gas turbine exhaust system components and other applications where austenitic ductile irons have traditionally been utilized. The low carbon content of austenitic steels permits improved weldabilty and processing characteristics over austenitic ductile irons. The enhancements provided by the alloy indicate that additional applications, as both austenitic ductile iron replacements and new components, will arise in the future.


1974 ◽  
Vol 96 (3) ◽  
pp. 181-184 ◽  
Author(s):  
J. R. Cummins

To investigate the sources of acoustic radiation from a gas turbine exhaust, a one-seventh scale model has been constructed. The model geometrically scales the flow path downstream of the rotating parts including support struts and turning vanes. A discussion and comparison of different kinds of aerodynamic and acoustic scaling techniques are given. The effect of the temperature ratio between model and prototype is found to be an important parameter in comparing acoustical data.


Author(s):  
Orlando Ugarte ◽  
Suresh Menon ◽  
Wayne Rattigan ◽  
Paul Winstanley ◽  
Priyank Saxena ◽  
...  

Abstract In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three dimensional, compressible and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed in 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.


Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


Sign in / Sign up

Export Citation Format

Share Document