Lectin Activity of Species of Genus Cerrena S.F. Gray (Aphyllophoromycetideae) in Submerged Fermentation of Lignocellulosic Materials

2011 ◽  
Vol 13 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Elene Davitashvili ◽  
Ekaterine Kapanadze ◽  
Eva Kachlishvili ◽  
Vladimir Elisashvili
2020 ◽  
Vol 52 (6) ◽  
Author(s):  
Amjad Hussain ◽  
Hamid Mukhtar ◽  
Ikram Ul Haq

2018 ◽  
Vol 96 (10) ◽  
pp. 27-34
Author(s):  
M. Musiienko ◽  
L. Batsmanova ◽  
Ju. Pys'menna ◽  
T. Kondratiuk ◽  
N. Taran ◽  
...  

2011 ◽  
Vol 37 (5) ◽  
pp. 567-572
Author(s):  
G. Gantioque Geraldine ◽  
Lu ZENG ◽  
Yan-bin XIA

2017 ◽  
Vol 14 (6) ◽  
pp. 778-784 ◽  
Author(s):  
Joanna Brzeska

Background: Cross-linking structure of polyurethanes determines no degradability of these materials. However, introducing the hydrolysable substrates (of natural or synthetic origin) into the cross-linked polyurethanes structure makes them biodegradable. Moreover compounds (such as polycaprolactone triol, glycerin, lysine triisocyanate, etc.) that are used for polyurethane cross-linking are degraded in non-toxic products. All these kinds of compounds can be introduced into soft or hard segments via urethane bonds. Objective: The review focuses on kind of multifunctional polyols and isocyanates, and low molecular crosslinkers used for cross-linked polyurethanes obtaining. These compounds are natural substrates (in the native state or after modification) or are synthetic compounds with degradable linkages. They belong to polyesters, plant oils, proteins, saccharides, and others (e.g. lignocellulosic materials), and they are synthesized chemically or via biosynthesis by algae, plants, microorganisms, and by animals. Conclusion: Incorporation of degradable groups (such as ester moieties) into the polymer structure, and using of substrates with the structure known and metabolized by microorganisms for soft or hard segments building, facilitate degradation of cross-linked polyurethanes.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 87
Author(s):  
Ali Umut Şen ◽  
Helena Pereira

In recent years, there has been a surge of interest in char production from lignocellulosic biomass due to the fact of char’s interesting technological properties. Global char production in 2019 reached 53.6 million tons. Barks are among the most important and understudied lignocellulosic feedstocks that have a large potential for exploitation, given bark global production which is estimated to be as high as 400 million cubic meters per year. Chars can be produced from barks; however, in order to obtain the desired char yields and for simulation of the pyrolysis process, it is important to understand the differences between barks and woods and other lignocellulosic materials in addition to selecting a proper thermochemical method for bark-based char production. In this state-of-the-art review, after analyzing the main char production methods, barks were characterized for their chemical composition and compared with other important lignocellulosic materials. Following these steps, previous bark-based char production studies were analyzed, and different barks and process types were evaluated for the first time to guide future char production process designs based on bark feedstock. The dry and wet pyrolysis and gasification results of barks revealed that application of different particle sizes, heating rates, and solid residence times resulted in highly variable char yields between the temperature range of 220 °C and 600 °C. Bark-based char production should be primarily performed via a slow pyrolysis route, considering the superior surface properties of slow pyrolysis chars.


2021 ◽  
Vol 109 ◽  
pp. 365-373
Author(s):  
Gabriela N. Pereira ◽  
Karina Cesca ◽  
Anelise Leal Vieira Cubas ◽  
Débora de Oliveira

Sign in / Sign up

Export Citation Format

Share Document