Estimation of the Prospects of Using Model Species of Wood Plants for the Overcoming the "City Heat Island" by Parameters of the Functional State of Photosynthetic Apparatus

2018 ◽  
Vol 50 (12) ◽  
pp. 51-61
Author(s):  
Nataliya B. Svietlova ◽  
Vladimir A. Storozhenko ◽  
Oxana A. Futornа ◽  
Vladislava A. Badanina ◽  
Oxana V. Tischenko ◽  
...  
Stresses ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 69-77
Author(s):  
Andrea Vannini ◽  
Giulia Canali ◽  
Sergio Enrico Favero-Longo ◽  
Stefano Loppi

This study investigated the accumulation and phytotoxicity of two commercial biocides widely used for the removal of biological colonization from monuments, namely Biotin T® (3%) and Preventol RI80® (2%), on lichen and moss model species, specifically, Evernia prunastri and Brachythecium sp. The active compounds, benzalkonium chloride (BAC) for Preventol RI80 and isothiazolinone (OIT) for Biotin T, were accumulated in similar amounts in both species without significant changes for up to 21 days. Both compounds caused a severe impairment of the photosynthetic apparatus of these species, without any recovery over time, although Biotin T showed a faster and stronger action, and the moss was more sensitive than the lichen. By shedding light on the accumulation of BAC and OIT in lichens and mosses and quantifying their effectiveness to photosynthetically devitalize these organisms, the obtained results are a useful comparison for the implementation of green alternative products for the control of biodeteriogens.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 597
Author(s):  
Yuri Golik ◽  
Oksana Illiash ◽  
Nataliia Maksiuta

The concept of "heat-island effect", its structure and features of formation over the city are given. The climatic and other features of the city that influence the formation of this phenomenon are mentioned.  The data on functioning in the city of the municipal production enterprise of the heat economy is indicated. The traditional method for determining the formation of the urban "heat-island effect" is described. The data and comparative graphs on the temperature regimes of the city and region are presented. The possibility of influencing architectural features of the city on the formation of the "heat-island-effect" is determined. According to the obtained results, further integrated researches are proposed for obtaining reliable results of the given question. 


2021 ◽  
Author(s):  
Jorden J. S. Lefler

This thesis discusses a method of analysing the input of interventions in a building's site design, all of which affect the heat island effect, bio-diversity and hydrology of urban areas. Existing standards from Toronto, Vancouver and Berlin have been researched and analysed. This paper presents an evolution of a method called biotope area factor used in Berlin, Germany. A synthesis of the approach of all three systems was considered and distilled into the key points which were then incorporated into the proposed method. In addition to the impact of an individual building, it also includes the impact from the adjacent street area. The final components of this thesis are the application of the method developed to an urban area in the city of Toronto and results showing the impacts on architectural design from site rating systems.


2003 ◽  
Vol 83 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Goran Andjelkovic

The urban heat island, as a phenomenon due to the higher air temperature in the cities as compared to their immediate surroundings, represents the most important consequence of the urbanization influence on the topoclimate. As compared to the smaller cities in its surroundings, Belgrade's average annual temperature is from 0,4 to 1,0 ?C higher (period 1961-1990). A very liable index of the Belgrade's heat island is the air temperature measured at the airport in Surcin. In the period from 1971-1990. average annual air temperature at the airport was 11,2 ?C, and in the city center it was 0,7 ?C higher. Belgrade has a higher absolute minimal temperature than its surroundings during every month. In the last climatic period the absolute temperature minimum in Belgrade was even 5,4 ?C higher than the highest value measured within this parameter in its wider surroundings (Veliko Gradiste -26,4 ?C). In the above mentioned twenty years period the absolute air temperature minimum in Surcin was -26,0 ?C, and in the city center only -18,2 ?C. The number of the frosty days at the airport was 77,8, and in Belgrade 58,2. Although the heat island of Belgrade was formed together with formation of the city, it was more evident at the beginning of the 20th century (0,4 ?C). During the next five to six decades a faster intensity growth was recorded (up to 0,9 ?C). This coincides with the period of the population growth as well as with development of the city activities, industry above all. During one year the intensity of the Belgrade's heat island reached its maximum in winter. In January the city, as compared to Surcin, was warmer for about 1,0 ?C, and in September for only 0,1 ?C. The daily variations of the heat island are such that it reaches its highest intensity during the evening hours (at 9 p.m. 0,9 ?C). If the average values of the extreme daily temperatures are being examined, one can see a distinct difference: average city minimums are 1,5 ?C higher than the airport minimums, while the maximums are only 0,2 ?C higher. During winter, in concrete anticyclonic conditions, it can be 10 ?C warmer in the city than in the immediate surroundings. Together with the perennial growth of heat island intensity, its "space range" also expands. The space structure of the heat island is very distinct. Exceptions in the temperature values between certain points of measurements in the winter morning hours can go up to 6-8 ?C.


2021 ◽  
Author(s):  
Shihan Chen ◽  
Yuanjian Yang ◽  
Fei Deng ◽  
Yanhao Zhang ◽  
Duanyang Liu ◽  
...  

Abstract. Due to rapid urbanization and intense human activities, the urban heat island (UHI) effect has become a more concerning climatic and environmental issue. A high spatial resolution canopy UHI monitoring method would help better understand the urban thermal environment. Taking the city of Nanjing in China as an example, we propose a method for evaluating canopy UHI intensity (CUHII) at high resolution by using remote sensing data and machine learning with a Random Forest (RF) model. Firstly, the observed environmental parameters [e.g., surface albedo, land use/land cover, impervious surface, and anthropogenic heat flux (AHF)] around densely distributed meteorological stations were extracted from satellite images. These parameters were used as independent variables to construct an RF model for predicting air temperature. The correlation coefficient between the predicted and observed air temperature in the test set was 0.73, and the average root-mean-square error was 0.72 °C. Then, the spatial distribution of CUHII was evaluated at 30-m resolution based on the output of the RF model. We found that wind speed was negatively correlated with CUHII, and wind direction was strongly correlated with the CUHII offset direction. The CUHII reduced with the distance to the city center, due to the de-creasing proportion of built-up areas and reduced AHF in the same direction. The RF model framework developed for real-time monitoring and assessment of high-resolution CUHII provides scientific support for studying the changes and causes of CUHII, as well as the spatial pattern of urban thermal environments.


2021 ◽  
Vol 13 (17) ◽  
pp. 9617 ◽  
Author(s):  
Wesam M. Elbardisy ◽  
Mohamed A. Salheen ◽  
Mohammed Fahmy

In the Middle East and North Africa (MENA) region, studies focused on the relationship between urban planning practice and climatology are still lacking, despite the fact that the latter has nearly three decades of literature in the region and the former has much more. However, such an unfounded relationship that would consider urban sustainability measures is a serious challenge, especially considering the effects of climate change. The Greater Cairo Region (GCR) has recently witnessed numerous serious urban vehicular network re-development, leaving the city less green and in need of strategically re-thinking the plan regarding, and the role of, green infrastructure. Therefore, this study focuses on approaches to the optimization of the urban green infrastructure, in order to reduce solar irradiance in the city and, thus, its effects on the urban climatology. This is carried out by studying one of the East Cairo neighborhoods, named El-Nozha district, as a representative case of the most impacted neighborhoods. In an attempt to quantify these effects, using parametric simulation, the Air Temperature (Ta), Mean Radiant Temperature (Tmrt), Relative Humidity (RH), and Physiological Equivalent Temperature (PET) parameters were calculated before and after introducing urban trees, acting as green infrastructure types that mitigate climate change and the Urban Heat Island (UHI) effect. Our results indicate that an optimized percentage, spacing, location, and arrangement of urban tree canopies can reduce the irradiance flux at the ground surface, having positive implications in terms of mitigating the urban heat island effect.


Author(s):  
Pieter Snyman ◽  
A. Stephen Steyn

Urban heat islands (UHIs) are characterised by warmer urban air temperatures compared to rural air temperatures, and the intensity is equal to the difference between the two. Air temperatures are measured at various sites across the city of Bloemfontein and then analysed to determine the UHI characteristics. The UHI is found to have a horseshoe shape and reaches a maximum intensity of 8.2 °C at 22:00. The UHI is largely affected by the local topography.


2020 ◽  
Vol 9 (12) ◽  
pp. 726
Author(s):  
Md. Omar Sarif ◽  
Bhagawat Rimal ◽  
Nigel E. Stork

More than half of the world’s populations now live in rapidly expanding urban and its surrounding areas. The consequences for Land Use/Land Cover (LULC) dynamics and Surface Urban Heat Island (SUHI) phenomena are poorly understood for many new cities. We explore this issue and their inter-relationship in the Kathmandu Valley, an area of roughly 694 km2, at decadal intervals using April (summer) Landsat images of 1988, 1998, 2008, and 2018. LULC assessment was made using the Support Vector Machine algorithm. In the Kathmandu Valley, most land is either natural vegetation or agricultural land but in the study period there was a rapid expansion of impervious surfaces in urban areas. Impervious surfaces (IL) grew by 113.44 km2 (16.34% of total area), natural vegetation (VL) by 6.07 km2 (0.87% of total area), resulting in the loss of 118.29 km2 area from agricultural land (17.03% of total area) during 1988–2018. At the same time, the average land surface temperature (LST) increased by nearly 5–7 °C in the city and nearly 3–5 °C at the city boundary. For different LULC classes, the highest mean LST increase during 1988–2018 was 7.11 °C for IL with the lowest being 3.18 °C for VL although there were some fluctuations during this time period. While open land only occupies a small proportion of the landscape, it usually had higher mean LST than all other LULC classes. There was a negative relationship both between LST and Normal Difference Vegetation Index (NDVI) and LST and Normal Difference Moisture Index (NDMI), respectively, and a positive relationship between LST and Normal Difference Built-up Index (NDBI). The result of an urban–rural gradient analysis showed there was sharp decrease of mean LST from the city center outwards to about 15 kms because the NDVI also sharply increased, especially in 2008 and 2018, which clearly shows a surface urban heat island effect. Further from the city center, around 20–25 kms, mean LST increased due to increased agriculture activity. The population of Kathmandu Valley was 2.88 million in 2016 and if the growth trend continues then it is predicted to reach 3.85 million by 2035. Consequently, to avoid the critical effects of increasing SUHI in Kathmandu it is essential to improve urban planning including the implementation of green city technologies.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 123 ◽  
Author(s):  
Guglielmina Mutani ◽  
Valeria Todeschi

There is growing attention to the use of greenery in urban areas, in various forms and functions, as an instrument to reduce the impact of human activities on the urban environment. The aim of this study has been to investigate the use of green roofs as a strategy to reduce the urban heat island effect and to improve the thermal comfort of indoor and outdoor environments. The effects of the built-up environment, the presence of vegetation and green roofs, and the urban morphology of the city of Turin (Italy) have been assessed considering the land surface temperature distribution. This analysis has considered all the information recorded by the local weather stations and satellite images, and compares it with the geometrical and typological characteristics of the city in order to find correlations that confirm that greenery and vegetation improve the livability of an urban context. The results demonstrate that the land-surface temperature, and therefore the air temperature, tend to decrease as the green areas increase. This trend depends on the type of urban context. Based on the results of a green-roofs investigation of Turin, the existing and potential green roofs are respectively almost 300 (257,380 m2) and 15,450 (6,787,929 m2). Based on potential assessment, a strategy of priority was established according to the characteristics of building, to the presence of empty spaces, and to the identification of critical areas, in which the thermal comfort conditions are poor with low vegetation. This approach can be useful to help stakeholders, urban planners, and policy makers to effectively mitigate the urban heat island (UHI), improve the livability of the city, reduce greenhouse gas (GHG) emissions and gain thermal comfort conditions, and to identify policies and incentives to promote green roofs.


Sign in / Sign up

Export Citation Format

Share Document