Synergistic Effects of Implant Macrogeometry and Surface Physicochemical Modifications on Osseointegration: An In Vivo Experimental Study in Sheep

Author(s):  
Edmara T. P. Bergamo ◽  
Paula G. F. P de Oliveira ◽  
Ryo Jimbo ◽  
Rodrigo Neiva ◽  
Nick Tovar ◽  
...  
2020 ◽  
Vol 15 (2) ◽  
pp. 132-142
Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve

Background: Arnica montana, containing helenalin as its principal active constituent, is the most widely used plant to treat various ailments. Recent studies indicate that Arnica and helenalin provide significant health benefits, including anti-inflammatory, neuroprotective, antioxidant, cholesterol-lowering, immunomodulatory, and most important, anti-cancer properties. Objective: The objective of the present study is to overview the recent patents of Arnica and its principal constituent helenalin, including new methods of isolation, and their use in the prevention of cancer and other ailments. Methods: Current prose and patents emphasizing the anti-cancer potential of helenalin and Arnica, incorporated as anti-inflammary agents in anti-cancer preparations, have been identified and reviewed with particular emphasis on their scientific impact and novelty. Results: Helenalin has shown its anti-cancer potential to treat multiple types of tumors, both in vitro and in vivo. It has also portrayed synergistic effects when given in combination with other anti- cancer drugs or natural compounds. New purification/isolation techniques are also developing with novel helenalin formulations and its synthetic derivatives have been developed to increase its solubility and bioavailability. Conclusion: The promising anti-cancer potential of helenalin in various preclinical studies may open new avenues for therapeutic interventions in different tumors. Thus clinical trials validating its tumor suppressing and chemopreventive activities, particularly in conjunction with standard therapies, are immediately required.


Author(s):  
Atsushi Kawamura ◽  
Yosuke Akiba ◽  
Masako Nagasawa ◽  
Makiko Takashima ◽  
Yoshiaki Arai ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Earnest Oghenesuvwe Erhirhie ◽  
Chidozie Ikegbune ◽  
Anthony Ifeanyi Okeke ◽  
Chukwunonso Chukwudike Onwuzuligbo ◽  
Ngozi Ukamaka Madubuogwu ◽  
...  

AbstractDevelopment of resistance by malaria parasites to conventional antimalarial drugs has rejuvenated the exploration of herbal medicine as alternatives. Also, the increasing rate of the use of herbal antimalarial remedies in combination with conventional antimalarial drugs (both synthetic and semi-synthetic) has inspired researchers to validate their herb-drug interaction effects. This review evaluated the interaction outcomes between herbal antimalarial drugs in combination with conventional antimalarial drugs. With the aid of electronic databases, Pubmed and Google scholar, articles related to this subject were sourced from English peer reviewed scientific journals published from 2003 to 2020. Search terms used include “antimalarial-herbal drugs interaction”, “antimalarial medicinal plant interactions with conventional antimalarial drugs”, “drug-herbal interactions, “antimalarial drugs and medicinal plants”. Synergistic, antagonistic and none effects were reported among 30 studies reviewed. Among 18 in vivo studies on P. berghei and P. yoelii nigerense infected mice model, 14 showed synergism, 3 showed antagonism and 1 involving three plants showed both effects. Among 9 in-vivo studies involving normal animal (non-infected), 2 showed antagonism, 2 showed synergism and 5 showed none-effects. Two (2) studies on human volunteers and one (1) in vitro quantitative study showed that Garcinia kola reduced plasma concentrations of quinine and halofantrine. Generally, majority of herbal antimalarial drugs showed synergistic effects with CAMDs. Vernonia amygdalina was the most studied plant compared to others. Consequently, herbal remedies that produced synergistic effects with conventional antimalarial drugs may be prospects for standardization and development of antimalarial-medicinal plant combination therapy that could curtail malaria resistance to conventional antimalarial therapies.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii62-ii62
Author(s):  
Elisa Izquierdo ◽  
Diana Carvalho ◽  
Alan Mackay ◽  
Sara Temelso ◽  
Jessica K R Boult ◽  
...  

Abstract The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In the era of precision medicine, targeted therapies represent an exciting treatment opportunity, yet resistance can rapidly emerge, playing an important role in treatment failure. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling (methylation BeadArray, exome, RNAseq, phospho-proteomics) linked to drug screening in newly-established patient-derived models of DIPG in vitro and in vivo. We identified a high degree of in vitro sensitivity to the MEK inhibitor trametinib (GI50 16-50nM) in samples, which harboured genetic alterations targeting the MAPK pathway, including the non-canonical BRAF_G469V mutation, and those affecting PIK3R1 and NF1. However, treatment of PDX models and of a patient with trametinib at relapse failed to elicit a significant response. We generated trametinib-resistant clones (62-188-fold, GI50 2.4–5.2µM) in the BRAF_G469V model through continuous drug exposure, and identified acquired mutations in MEK1/2 (MEK1_K57N, MEK1_I141S and MEK2_I115N) with sustained pathway up-regulation. These cells showed the hallmarks of mesenchymal transition, and expression signatures overlapping with inherently trametinib-insensitive primary patient-derived cells that predicted an observed sensitivity to dasatinib. Combinations of trametinib with dasatinib and the downstream ERK inhibitor ulixertinib showed highly synergistic effects in vitro. These data highlight the MAPK pathway as a therapeutic target in DIPG, and show the importance of parallel resistance modelling and rational combinatorial treatments likely to be required for meaningful clinical translation.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2204
Author(s):  
Meng-Die Yang ◽  
Yang Sun ◽  
Wen-Jun Zhou ◽  
Xiao-Zheng Xie ◽  
Qian-Mei Zhou ◽  
...  

Triple-negative breast cancer (TNBC) is a refractory type of breast cancer that does not yet have clinically effective drugs. The aim of this study is to investigate the synergistic effects and mechanisms of resveratrol combined with cisplatin on human breast cancer MDA-MB-231 (MDA231) cell viability, migration, and invasion in vivo and in vitro. In vitro, MTS assays showed that resveratrol combined with cisplatin inhibits cell viability as a concentration-dependent manner, and produced synergistic effects (CI < 1). Transwell assay showed that the combined treatment inhibits TGF-β1-induced cell migration and invasion. Immunofluorescence assays confirmed that resveratrol upregulated E-cadherin expression and downregulated vimentin expression. Western blot assay demonstrated that resveratrol combined with cisplatin significantly reduced the expression of fibronectin, vimentin, P-AKT, P-PI3K, P-JNK, P-ERK, Sma2, and Smad3 induced by TGF-β1 (p < 0.05), and increased the expression of E-cadherin (p < 0.05), respectively. In vivo, resveratrol enhanced tumor growth inhibition and reduced body weight loss and kidney function impairment by cisplatin in MDA231 xenografts, and significantly reduced the expressions of P-AKT, P-PI3K, Smad2, Smad3, P-JNK, P-ERK, and NF-κB in tumor tissues (p < 0.05). These results indicated that resveratrol combined with cisplatin inhibits the viability of breast cancer MDA231 cells synergistically, and inhibits MDA231 cells invasion and migration through Epithelial-mesenchymal transition (EMT) approach, and resveratrol enhanced anti-tumor effect and reduced side of cisplatin in MDA231 xenografts. The mechanism may be involved in the regulations of PI3K/AKT, JNK, ERK and NF-κB expressions.


2019 ◽  
Vol 33 (9) ◽  
pp. 725-729 ◽  
Author(s):  
Yasser A. Noureldin ◽  
Panagiotis Kallidonis ◽  
Panteleimon Ntasiotis ◽  
Constantinos Adamou ◽  
Evangelos Zazas ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Fabrizio Fontana ◽  
Michela Raimondi ◽  
Monica Marzagalli ◽  
Roberta M. Moretti ◽  
Marina Montagnani Marelli ◽  
...  

Background: Tocotrienols (TTs) are vitamin E derivatives naturally occurring in several plants and vegetable oils. Like Tocopherols (TPs), they comprise four isoforms, α, β, γ and δ, but unlike TPs, they present an unsaturated isoprenoid chain. Recent studies indicate that TTs provide important health benefits, including neuroprotective, anti-inflammatory, anti-oxidant, cholesterol lowering and immunomodulatory effects. Moreover, they have been found to possess unique anti-cancer properties.Objective:The purpose of this review is to present an overview of the state of the art of TTs role in cancer prevention and treatment, as well as to describe recent patents proposing new methods for TTs isolation, chemical modification and use in cancer prevention and/or therapy.Methods:Recent literature and patents focusing on TTs anti-cancer applications have been identified and reviewed, with special regard to their scientific impact and novelty.Results:TTs have demonstrated significant anti-cancer activity in multiple tumor types, both in vitro and in vivo. Furthermore, they have shown synergistic effects when given in combination with standard anti-cancer agents or other anti-tumor natural compounds. Finally, new purification processes and transgenic sources have been designed in order to improve TTs production, and novel TTs formulations and synthetic derivatives have been developed to enhance their solubility and bioavailability.Conclusion:The promising anti-cancer effects shown by TTs in several preclinical studies may open new opportunities for therapeutic interventions in different tumors. Thus, clinical trials aimed at confirming TTs chemopreventive and tumor-suppressing activity, particularly in combination with standard therapies, are urgently needed.


2013 ◽  
Vol 39 (11) ◽  
pp. 2147-2157 ◽  
Author(s):  
Hai-Peng Tong ◽  
Luo-Fu Wang ◽  
Yan-Li Guo ◽  
Lang Li ◽  
Xiao-Zhou Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document