WHAT IS A NON-BEERIAN EFFECTIVE PHASE OF A MACROPOROUS MEDIUM?

Author(s):  
Franck Enguehard ◽  
Jean Taine
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Run Shi ◽  
Yong Chen ◽  
Xiangbin Cai ◽  
Qing Lian ◽  
Zhuoqiong Zhang ◽  
...  

AbstractA systematic study of various metal-insulator transition (MIT) associated phases of VO2, including metallic R phase and insulating phases (T, M1, M2), is required to uncover the physics of MIT and trigger their promising applications. Here, through an oxide inhibitor-assisted stoichiometry engineering, we show that all the insulating phases can be selectively stabilized in single-crystalline VO2 beams at room temperature. The stoichiometry engineering strategy also provides precise spatial control of the phase configurations in as-grown VO2 beams at the submicron-scale, introducing a fresh concept of phase transition route devices. For instance, the combination of different phase transition routes at the two sides of VO2 beams gives birth to a family of single-crystalline VO2 actuators with highly improved performance and functional diversity. This work provides a substantial understanding of the stoichiometry-temperature phase diagram and a stoichiometry engineering strategy for the effective phase management of VO2.


2011 ◽  
Vol 70 ◽  
pp. 243-248
Author(s):  
Shien Ri ◽  
Takashi Muramatsu ◽  
Masumi Saka

Recently, a technique for fast and accurate phase analysis called sampling moiré method has been developed for measurement of small-displacement distribution. In this study, a distribution of phase error caused by linear interpolation in case with mismatch between the sampling pitch and the grating pitch is theoretically analyzed. Moreover, a technique for effective phase compensation is proposed to reduce the periodic phase error. The performance of our compensation method is validated by a computer simulation. Phase analysis can be performed more accurately even in the case that the sampling pitch does not match to the grating pitch strictly.


2014 ◽  
Vol 22 (6) ◽  
pp. 6276 ◽  
Author(s):  
Yue Liu ◽  
Chuanchuan Yang ◽  
Feng Yang ◽  
Hongbin Li

2021 ◽  
pp. 1-32
Author(s):  
Wei Kang ◽  
Long Li ◽  
Jizeng Wang

Abstract In the process of inflammation, the hydrodynamic process of circulating leukocyte recruitment to the inflammatory site requires the rolling adhesion of leukocytes in blood vessels mediated by selectin and integrin molecules. Although a number of experiments have demonstrated that cooperative effects exist between selectins and integrins in leukocyte rolling adhesion under shear flow, the mechanisms underlying how the mechanics of selectins and integrins synergistically may govern the dynamics of cell rolling is not yet fully resolved. Here we present a mechanical model on selectin- and integrin- jointly mediated rolling adhesion of leukocyte in shear flow, by considering two pairs' binding/unbinding events as Markov processes and describing kinetics of leukocyte by the approach of continuum mechanics. Through examining the dynamics of leukocyte rolling as a function of relative fraction of selectin and integrin pairs, we show that, during recruitment, the elongation of intermittent weak selectin bonds consuming the kinetic energy of rolling leukocyte decelerates the rolling speed and enables the integrin pairs to form strong bonds, therefore achieving the arrestment of leukocyte (firm adhesion). The coexistence of selectins and integrins may also be required for effective phase transition from firm adhesion to rolling adhesion, due to dynamic competition in pairs' formation and elongation. These results are verified by the relevant Monte Carlo simulations and related to reported experimental observations.


2014 ◽  
Vol 670-671 ◽  
pp. 1488-1492
Author(s):  
Chi Zhang ◽  
Zhong Wei Li ◽  
Yu Sheng Shi

To satisfy rigid performance specifications of structure light measurement by phase shift method, the algorithm of phase image segmentation and filter based on direction of the gradient factor was introduced in this paper. In this method, phase image was divided into three parts by condition of extreme value and direction of the gradient factor, including continuous area, edge area and regional noise. Only phase data in continuous area was processed by median filter. This method can reduce the point matching computation of 3-D reconstruction, and at the same time can protect the image edge details, so as to reduce the noise data, provide accurate and effective phase data for reconstruction. Results of segmentation verify feasibility and effectiveness of presented method.


Sign in / Sign up

Export Citation Format

Share Document