scholarly journals Absorption capacity of superabsorbent polymer in cement pastes: a robustness test

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Shengying Zhao ◽  
Ole Mejlhede Jensen ◽  
Marianne Tange Hasholt ◽  
Xinchun Guan
Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2782
Author(s):  
Yong-Rok Kwon ◽  
Jung-Soo Kim ◽  
Dong-Hyun Kim

A superabsorbent polymer (SAP) was synthesized by copolymerizing itaconic acid and vinyl sulfonic acid. The typically low absorbency of itaconic acid-based SAPs under mechanical loads was improved by introducing surface crosslinking. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the synthesis and surface-crosslinking reactions in the SAP. Various conditions for surface-crosslinking reactions, such as the surface-crosslinking solution, content of surface-crosslinking agent, and reaction temperature, were explored and correlated with the gel strength and absorption characteristics of the resulting SAP particles. The distilled water content in the surface-crosslinking solution strongly influenced the absorption capacity of the SAP, but this sensitivity decreased when acetone was used as a co-solvent. Itaconic acid-based SAP that was crosslinked under optimal conditions exhibited centrifuge retention capacity and absorbency under a load of 31.1 and 20.2, respectively.


2012 ◽  
Vol 476-478 ◽  
pp. 1702-1708
Author(s):  
Hai Yan Lin ◽  
Yong Fu Yang ◽  
Yu Jiang Wang

Organic substances containing hydroxyl group and alcohol amine group were chosen in this paper and the effects of different organic group on powder properties and physical performance of cement pastes were studied using various methods of analysis, such as particle size analysis, fluidness analysis and XRD. The results show that monohydric alcohols have a neglectable aid-grinding effect. For Polyhydric alcohols and ethanol amine, the absorption capacity of the hydroxyl group or amido on the surface of the powder may increase in relation to the increase in groups, which can increase fineness but cannot improve the fluidity. For Diethanolamine and Triethanolamine, the absorption on the powder mainly depends on the hydroxyl group, but the amido has a strong electrostatic repulsive force, so the dispersion of the powder not only comes from high steric hindrance effect, but also the electrostatic repulsive force, which can improve the powder’s dispersity, reduce sieve residue and increase the fluidity. This research paper provides a theoretical guide for the application of grinding aids.


2018 ◽  
Vol 11 (2) ◽  
pp. 84
Author(s):  
A. Zainal Abidin ◽  
G Susanto ◽  
N.M.T. Sastra ◽  
T Puspasari

Synthesis and Characterization of Superabsorbent from Acrylamide Superabsorbent polymer (SAP) is a material that can absorb water in a large amount in a short time. In this research, the polymer has been synthesized from acrylamide monomer (Am) using N,N methylene bisacrylamide (MBA)as a cross-linker and ammonium persulphate (APS) as an initiator. Effects of MBA and APS on the SAP characteristic were studied by varying composition of MBA and APS each of 0.1%-wt, 0.2 %-wt, 0.6 %-wt and 1.0 %-wt. SAP was characterized by measuring its absorption capacity to distilled water. Based on the experiment, the highest absorption capacity for 1 gram SAP is 14.5 gram water. The highest absorption is produced by SAP with APS 0.2 %-wt and MBA 0.6 %-wt. Further studies by using SEM showed that SAP which had high absorption capacity contained a lot of pores with the waving surface. Therefore, the surface contact area between SAP and water is high. Keywords: acrylamide, absorption capacity, superabsorbent polymerAbstrakSuperabsorbent Polymer (SAP) merupakan polimer yang dapat menyerap air dalam jumlah yang sangat banyak. Dalam penelitian ini, polimer tersebut disintesis dari monomer akrilamida menggunakan crosslinker N,N-metilene bisakrilamide (MBA) dan inisiator amonium persulfat (APS). Pengaruh crosslinker dan inisiator terhadap karakteristik SAP dipelajari dengan melakukan variasi komposisi APS dan (MBA) masing-masing sebesar 0,1 %-b, 0,2 %-b, 0,6 %-b, dan 1 %-b. Karakteristik produk SAP dipelajari dengan FTIR untuk menganalisis gugus fungsi yang terbentuk untuk menunjukkan bahwa polimerisasi betul terjadi dan produknya berupa SAP. Pengukuran kemampuan absorpsi SAP terhadap air destilasi menunjukkan bahwa kapasitas absorpsi terbesar yang dihasilkan oleh superabsorbent polymer dari penelitian ini sebesar 14,5 gram air dalam 1 gram produk SAP yang dibuat. Kapasitas terbesar ini dimiliki oleh SAP dengan 0,2 %-b APS dan 0,6 %-b MBA. Studi lebih lanjut dengan SEM menunjukkan bahwa SAP yang memiliki kapasitas absorpsi tertinggi itu mempunyai morfologi permukaan yang berombak dan jumlah pori yang tertinggi sehingga luas permukaan kontak antara SAP dan air juga tertinggi. Kata kunci: akrilamida, kapasitas absorpsi, superabsorbent polymer


2020 ◽  
Vol 995 ◽  
pp. 161-167
Author(s):  
Hana Schreiberova ◽  
Josef Fládr ◽  
Karel Šeps ◽  
Alena Kohoutkova

The application of self-healing concrete for durability enhancement has become a widely studied topic in recent decades. This paper focuses on addition of a superabsorbent polymer (SAP) to bio-based self-healing concrete – a material in which cracks are autonomously sealed by incorporated microorganisms. As previously proposed, the SAP could serve as protection of the microorganisms against the harsh concrete environment and possibly to further enhance the materials autogenous sealing capacity. However, determining the applicable bio-based concrete mix design is not without obstacles as the immense absorption capacity of the SAP is, inter alia, closely related to ions present in the solution. This current study compares different mix designs of cement paste with the nutrients applied in the bio-based concrete and the addition of the SAP in dry and partially saturated states. The paste consistencies are determined, and a number of cement paste specimens is prepared to measure flexural and compressive strengths at 7 and 28 days from casting. The flowability results indicate that the SAP in a dry state absorbs slightly less than 25 g/g SAP of extra mixing water as the final consistency was similar to the reference paste. Further, the results showed that the partially saturated SAP is able to retain a great amount of the liquid throughout the mixing process. In this study, the strengths generally drop by still admissible 20% in the case of the dry SAP and extra water addition, whereas the replacement of mixing water by the partially saturated SAP results in a significant strength increase. These findings indicate that the dosage 0.5% SAP by cement weight in both of the states, dry and saturated, is applicable in the nutrient enriched cement paste from the mechanical perspective, although further work which would describe the absorption and retention mechanisms in depth is needed.


2021 ◽  
Vol 34 ◽  
pp. 102024
Author(s):  
Livia B. Agostinho ◽  
de C. Pereira Alexandre ◽  
Eugênia F. da Silva ◽  
Romildo Dias Toledo Filho

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 929
Author(s):  
Minji Whang ◽  
Hyeonji Yu ◽  
Jungwook Kim

Owing to its superior water absorption capacity, superabsorbent polymer (SAP) based on a poly (acrylic acid) network is extensively used in industrial products such as diapers, wound dressing, or surgical pads. However, because SAP does not degrade naturally, a massive amount of non-degradable waste is discarded daily, posing serious environmental problems. Considering that diapers are the most widely used end-product of SAP, we created one that is degradable by a human urinary enzyme. We chose three enzyme candidates, all of which have substrates that were modified with polymerizable groups to be examined for cleavable crosslinkers of SAP. We found that the urokinase-type plasminogen activator (uPA) substrate, end-modified with acrylamide groups at sufficient distances from the enzymatic cleavage site, can be successfully used as a cleavable crosslinker of SAP. The resulting SAP slowly degraded over several days in the aqueous solution containing uPA at a physiological concentration found in human urine and became shapeless in ~30 days.


2019 ◽  
Vol 2 (2) ◽  
pp. 95
Author(s):  
Nurul Ismillayli ◽  
Siti Raudhatul Kamali ◽  
Surya Hadi ◽  
Dhony Hermanto

Superabsorbent polymer (SAP) blend has been synthesized from carboxymethyl cellulose (CMC), humic acid, and aluminum sulphate octadecahydrate cross-linker.  SAP is hydrophilic networks that can absorb and retain huge amount of water within their structures. Humic acid as starting material of polymer, was isolated from subgrade Batujai Dam by using IHSS method. Water Absorption Capacity (WAC) measurement, FTIR analysis, and agitation tests to investigate the cross-linking process and which of Al3+ and SO42-  ions causes the crosslinking are carried out. Optimum cross-linking ratio of CMC and cross-linker appeared to be 2wt% corresponded to WAC determination. FTIR spectrum of CMC/humic acid blend and agitation test showed that CMC react with humic acid during polymerization process via Al3+ ion.   Keywords: carboxymethyl cellulose; Al3+ ion; humic acid; superabsorbent polymer.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2380
Author(s):  
Youwei Qin ◽  
Tao Yang ◽  
Siyuan Wang ◽  
Fangling Hou ◽  
Pengfei Shi ◽  
...  

As a water absorption material, superabsorbent polymer (SAP) has gained its popularity in agriculture and environmental remediations. This study conducted a comparative investigation on saturated water content of cinnamon soil mixed with SAP. Two SAPs, SAP1 and SAP2, with different behaviors were tested, where SAP1 is an organic superabsorbent polymer, and SAP2 is polyacrylic acid sodium salt polymer. The saturated water content of SAP composite cinnamon soil was investigated with the weighing method. The repeated water absorption capacity and dehydration behavior of SAP composite soil under different designed rainfall intensity were investigated with a soil column tester. The results showed that (1) cinnamon soil mixed with SAP increased the saturated soil water content, and SAP1 was more effective than SAP2; (2) SAP held strong water absorption ability and recycling efficiency with eight repeated absorption–dehydration tests; (3) the average dehydration time for SAP composite soil were 626 h and 1214 h under 5-year and 10-year design rainfall intensities.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Hongliang Guan ◽  
Junbo Li ◽  
Biyu Zhang ◽  
Xunmin Yu

To improve the humidity resistance and water absorption capacity of the superabsorbent polymer (SAP), a biodegradable cellulose-containing polymer was successfully assembled through inverse suspension polymerization, using cellulose, acrylic acid, and acrylamide as monomers, Span-80 as dispersant, and potassium persulfate as initiator. The impact of conditions such as reaction temperature, ratio of oil to water, degree of neutralization, amount of cellulose, and cross-linking agents on the properties of the polymer were evaluated. The results showed that the as-prepared superabsorbent polymer exhibited the best water (859 g/g) and salt water (72.48 g/g) absorption rate, when the reaction temperature was 70°C, monomer ratio was 1 : 10, neutralization degree was 75%, and oil-water ratio was 3 : 1. Moreover, the humidity resistance of the polymer could be enhanced significantly by adding different cross-linking reagents such as epoxy chloropropane or diethylene glycol.


Sign in / Sign up

Export Citation Format

Share Document