Optical Imaging of PKH‐Labeled Hematopoietic Cells in Recipient Bone Marrow In Vivo

Stem Cells ◽  
2002 ◽  
Vol 20 (6) ◽  
pp. 501-513 ◽  
Author(s):  
Nadir Askenasy ◽  
Daniel L. Farkas
Blood ◽  
1997 ◽  
Vol 89 (11) ◽  
pp. 3919-3924 ◽  
Author(s):  
Jean C.Y. Wang ◽  
Monica Doedens ◽  
John E. Dick

Abstract We have previously reported the development of in vivo functional assays for primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of severe combined immunodeficient (SCID) and nonobese diabetic/SCID (NOD/SCID) mice following intravenous transplantation. Accumulated data from gene marking and cell purification experiments indicate that the engrafting cells (defined as SCID-repopulating cells or SRC) are biologically distinct from and more primitive than most cells that can be assayed in vitro. Here we demonstrate through limiting dilution analysis that the NOD/SCID xenotransplant model provides a quantitative assay for SRC. Using this assay, the frequency of SRC in cord blood (CB) was found to be 1 in 9.3 × 105 cells. This was significantly higher than the frequency of 1 SRC in 3.0 × 106 adult BM cells or 1 in 6.0 × 106 mobilized peripheral blood (PB) cells from normal donors. Mice transplanted with limiting numbers of SRC were engrafted with both lymphoid and multilineage myeloid human cells. This functional assay is currently the only available method for quantitative analysis of human hematopoietic cells with repopulating capacity. Both CB and mobilized PB are increasingly being used as alternative sources of hematopoietic stem cells in allogeneic transplantation. Thus, the findings reported here will have important clinical as well as biologic implications.


1992 ◽  
Vol 3 (suppl b) ◽  
pp. 123-127 ◽  
Author(s):  
Hans-Georg Klingemann ◽  
Heather Deal ◽  
Dianne Reid ◽  
Connie J Eaves

Despite the use of high dose chemoradiotherapy for the treatment of acute leukemia. relapse continues to be a major cause of death in patients given an autologous bone marrow transplant. Further augmentation of pretransplant chemotherapy causes life threatening toxicity to nonhematopoietic tissues and the effectiveness of currently available ex vivo purging methods in reducing the relapse rate is unclear. Recently, data from experimental models have suggested that bone marrow-derived lymphokine (IL-2)-activated killer (BM-LAK) cells might be used to eliminate residual leukemic cells both in vivo and in vitro. To evaluate this possibility clinically, a procedure was developed for culturing whole marrow harvests with IL-2 prior to use as autografts, and a number of variables examined that might affect either the generation of BM-LAK cells or the recovery of the primitive hematopoietic cells. The use of Dexter long term culture (LTC) conditions, which expose the cells to horse serum and hydrocortisone. supported LAK cell generation as effectively as fetal calf serum (FCS) -containing medium in seven-day cultures. Maintenance of BM-LAK cell activity after a further seven days of culture in the presence of IL-2 was also tested. As in the clinical setting. patients would receive IL-2 in vivo for an additional week immediately following infusion of the cultured marrow autograft. Generation ofBM-LAK activity was dependent on the presence of IL-2 and could be sustained by further incubation in medium containing IL-2. Primitive hematopoietic cells were quantitated by measuring the number of in vitro colony-forming progenitors produced after five weeks in secondary Dexter-type LTC. Maintenance of these 'LTC-initiating cells' was unaffected by lL-2 in the culture medium. These results suggest that LAK cells can be generated efficien tly in seven-day marrow autograft cultures containing IL-2 under conditions that allow the most primitive human hematopoietic cells currently detectable to be maintained.


Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 624-634 ◽  
Author(s):  
JE Dick ◽  
S Kamel-Reid ◽  
B Murdoch ◽  
M Doedens

Abstract The ability to transfer new genetic material into human hematopoietic cells provides the foundation for characterizing the organization and developmental program of human hematopoietic stem cells. It also provides a valuable model in which to test gene transfer and long-term expression in human hematopoietic cells as a prelude to human gene therapy. At the present time such studies are limited by the absence of in vivo assays for human stem cells, although recent descriptions of the engraftment of human hematopoietic cells in immune-deficient mice may provide the basis for such an assay. This study focuses on the establishment of conditions required for high efficiency retrovirus- mediated gene transfer into human hematopoietic progenitors that can be assayed in vitro in short-term colony assays and in vivo in immune- deficient mice. Here we report that a 24-hour preincubation of human bone marrow in 5637-conditioned medium, before infection, increases gene transfer efficiency into in vitro colony-forming cells by sixfold; interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) provide the same magnitude increase as 5637-conditioned medium. In contrast, incubation in recombinant growth factors IL-1, IL-3, and granulocyte- macrophage colony-stimulating factor increases gene transfer efficiency by 1.5- to 3-fold. Furthermore, preselection in high concentrations of G418 results in a population of cells significantly enriched for G418- resistant progenitors (up to 100%). These results, obtained using detailed survival curves based on colony formation in G418, have been substantiated by directly detecting the neo gene in individual colonies using the polymerase chain reaction. Using these optimized protocols, human bone marrow cells were genetically manipulated with a neo retrovirus vector and transplanted into immune-deficient bg/nu/xid mice. At 1 month and 4 months after the transplant, the hematopoietic tissues of these animals remained engrafted with genetically manipulated human cells. More importantly, G418-resistant progenitors that contained the neo gene were recovered from the bone marrow and spleen of engrafted animals after 4 months. These experiments establish the feasibility of characterizing human stem cells using the unique retrovirus integration site as a clonal marker, similar to techniques developed to elucidate the murine stem cell hierarchy.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 488-499 ◽  
Author(s):  
Derek A. Persons ◽  
James A. Allay ◽  
Esther R. Allay ◽  
Richard A. Ashmun ◽  
Donald Orlic ◽  
...  

Abstract The zinc finger transcription factor GATA-2 is highly expressed in immature hematopoietic cells and declines with blood cell maturation. To investigate its role in normal adult hematopoiesis, a bicistronic retroviral vector encoding GATA-2 and the green fluorescent protein (GFP) was used to maintain the high levels of GATA-2 that are normally present in primitive hematopoietic cells. Coexpression of the GFP marker facilitated identification and quantitation of vector-expressing cells. Bone marrow cells transduced with the GATA-2 vector expressed GFP as judged by flow cytometry and GATA-2 as assessed by immunoblot analysis. A 50% to 80% reduction in hematopoietic progenitor-derived colony formation was observed with GATA-2/GFP-transduced marrow, compared with marrow transduced with a GFP-containing vector lacking the GATA-2 cDNA. Culture of purified populations of GATA-2/GFP-expressing and nonexpressing cells confirmed a specific ablation of the colony-forming ability of GATA-2/GFP-expressing progenitor cells. Similarly, loss of spleen colony-forming ability was observed for GATA-2/GFP-expressing bone marrow cells. Despite enforced GATA-2 expression, marrow cells remained viable and were negative in assays to evaluate apoptosis. Although efficient transduction of primitive Sca-1+Lin- cells was observed with the GATA-2/GFP vector, GATA-2/GFP-expressing stem cells failed to substantially contribute to the multilineage hematopoietic reconstitution of transplanted mice. Additionally, mice transplanted with purified, GATA-2/GFP-expressing cells showed post-transplant cytopenias and decreased numbers of total and gene-modified bone marrow Sca-1+ Lin−cells. Although Sca-1+ Lin− bone marrow cells expressing the GATA-2/GFP vector were detected after transplantation, no appreciable expansion in their numbers occurred. In contrast, control GFP-expressing Sca-1+Lin− cells expanded at least 40-fold after transplantation. Thus, enforced expression of GATA-2 in pluripotent hematopoietic cells blocked both their amplification and differentiation. There appears to be a critical dose-dependent effect of GATA-2 on blood cell differentiation in that downregulation of GATA-2 expression is necessary for stem cells to contribute to hematopoiesis in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1200-1200
Author(s):  
Hui Yu ◽  
Youzhong Yuan ◽  
Xianmin Song ◽  
Feng Xu ◽  
Hongmei Shen ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are significantly restricted in their ability to regenerate themselves in the irradiated hosts and this exhausting effect appears to be accelerated in the absence of the cyclin-dependent kinase inhibitor (CKI), p21. Our recent study demonstrated that unlike p21 absence, deletion of the distinct CKI, p18 results in a strikingly positive effect on long-term engraftment owing to increased self-renewing divisions in vivo (Yuan et al, 2004). To test the extent to which enhanced self-renewal in the absence of p18 can persist over a prolonged period of time, we first performed the classical serial bone marrow transfer (sBMT). The activities of hematopoietic cells from p18−/− cell transplanted mice were significantly higher than those from p18+/+ cell transplanted mice during the serial transplantation. To our expectation, there was no detectable donor p18+/+ HSC progeny in the majority (4/6) of recipients after three rounds of sBMT. However, we observed significant engraftment levels (66.7% on average) of p18-null progeny in all recipients (7/7) within a total period of 22 months. In addition, in follow-up with our previous study involving the use of competitive bone marrow transplantation (cBMT), we found that p18−/− HSCs during the 3rd cycle of cBMT in an extended long-term period of 30 months were still comparable to the freshly isolated p18+/+ cells from 8 week-old young mice. Based on these two independent assays and the widely-held assumption of 1-10/105 HSC frequency in normal unmanipulated marrow, we estimated that p18−/− HSCs had more than 50–500 times more regenerative potential than p18+/+ HSCs, at the cellular age that is equal to a mouse life span. Interestingly, p18 absence was able to significantly loosen the accelerated exhaustion of hematopoietic repopulation caused by p21 deficiency as examined in the p18/p21 double mutant cells with the cBMT model. This data directly indicates the opposite effect of these two molecules on HSC durability. To define whether p18 absence may override the regulatory mechanisms that maintain the HSC pool size within the normal range, we performed the transplantation with 80 highly purified HSCs (CD34-KLS) and then determined how many competitive reconstitution units (CRUs) were regenerated in the primary recipients by conducting secondary transplantation with limiting dilution analysis. While 14 times more CRUs were regenerated in the primary recipients transplanted with p18−/−HSCs than those transplanted with p18+/+ HSCs, the level was not beyond that found in normal non-transplanted mice. Therefore, the expansion of HSCs in the absence of p18 is still subject to some inhibitory regulation, perhaps exerted by the HSC niches in vivo. Such a result was similar to the effect of over-expression of the transcription factor, HoxB4 in hematopoietic cells. However, to our surprise, the p18 mRNA level was not significantly altered by over-expression of HoxB4 in Lin-Sca-1+ cells as assessed by real time PCR (n=4), thereby suggesting a HoxB4-independent transcriptional regulation on p18 in HSCs. Taken together, our current results shed light on strategies aimed at sustaining the durability of therapeutically transplanted HSCs for a lifetime treatment. It also offers a rationale for the feasibility study intended to temporarily target p18 during the early engraftment for therapeutic purposes.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3064-3064
Author(s):  
Fengchun Yang

Abstract Mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a GTPase activating protein for Ras called neurofibromin. NF1 is a genetic disorder that affects approximately 250,000 individuals in the US, Europe, and Japan alone. Neurofibromas, the hallmark of NF1, are complex tumors characterized by tumorigenic Schwann cells, neoangiogenesis, fibrosis, and degranulating mast cells. Studies in experimental models have emphasized the role of inflammatory cells in altering the microenvironment and facilitating malignant outgrowth. Similarly, Parada (Science, 2002) found that nullizygosity of Nf1 in Schwann cells of conditional knockout mice (Krox20;Nf1flox/flox) was necessary but not sufficient for neurofibroma formation and haploinsufficiency of Nf1 in lineages within the tumor microenvironment was required for neurofibroma progression. We previously provided the first genetic, cellular, and biochemical evidence that haploinsufficiency of Nf1 alters Ras activity and cell fates in mast cells (JEM, 2000, 2001) and identified a mechanism underlying the recruitment of mast cells to tumorigenic Schwann cells (JCI 2003). However, it remains unclear whether Nf1 +/− bone marrow derived hematopoietic cells can directly contribute to neurofibroma formation in vivo. To address this question, Nf1+/− or wildtype (WT) EGFP+ bone marrow (BM) was adoptively transferred into lethally irradiated Krox20;Nf1flox/flox mice and cohorts were followed prospectively for tumor formation using positron emission tomography and computerized axial tomography. Mice transplanted with Nf1+/− but not WT BM developed progressive enlargement of the trigeminal nerve, dorsal root ganglia, peripheral nerves, and motor paralysis similar to Krox20;Nf1flox/− mice that are haploinsufficient at Nf1 in all lineages of the tumor microenvironment. Postmortem analysis revealed that Krox20;Nf1flox/flox mice transplanted with Nf1+/− BM had cellular neurofibromas containing Schwann cells, fibroblasts, blood vessels and mast cells, which closely resembled the cellular architecture of human neurofibromas. Mice transplanted with WT BM did not develop neurofibromas. These studies establish that recruitment of Nf1 +/− BM derived cells to the neurofibroma microenvironment is directly linked to neurofibroma formation and progression. Given our observations, therapies which prevent both the recruitment and the tumor promoting functions of Nf1 +/− hematopoietic cells in neurofibroma formation are currently being tested in vivo as pre-clinical trials.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 663-663
Author(s):  
Dorothy A. Sipkins ◽  
Xunbin Wei ◽  
Juwell W. Wu ◽  
Terry K. Means ◽  
Andrew D. Luster ◽  
...  

Abstract The organization of cellular niches has been shown to play a key role in regulating normal stem cell differentiation and regeneration, yet relatively little is known about the architecture of microenvironments that support malignant proliferation. Using dynamic in vivo confocal and multi-photon imaging, we show that the bone marrow contains unique anatomic regions defined by specialized endothelium. This vasculature expresses the adhesion molecule E-selectin and the chemoattractant SDF-1 in discrete, discontinuous areas that localize the homing and early engraftment of both leukemic and normal primitive hematopoietic cells. Real-time imaging of cell-cell interactions in SCID mice bone marrow was performed after injection of fluorescently-labeled leukemic and other malignant cell lines. Progressive scanning and optical sectioning through the marrow revealed the existence of unique, spatially-restricted vascular domains to which the majority of marrow-homing tumor cells rolled and arrested. Serial imaging of mice on days 3 – 14 demonstrated that leukemic (Nalm-6 pre-B ALL) extravasation and early proliferation were restricted to these vascular beds. To define the molecular basis of these homing interactions, in vivo labeling of key vascular cell adhesion molecules and chemokines using fluorescent antibodies was performed. We observed that while ICAM-1, VCAM-1, PECAM-1 and P-selectin were expressed diffusely throughout the marrow vasculature, the expression of E-selectin and the chemokine receptor CXCR4 ligand SDF-1 was distinctly limited to vessels that supported leukemic cell engraftment. In vivo co-localization experiments confirmed Nalm-6 binding was restricted to vascular beds expressing both E-selectin and SDF-1. In functional studies, disruption of E-selection had a modest effect on leukemic homing (<20% diminution), while pharmacologic blockade of CXCR4 decreased Nalm-6 binding to vessels by approximately 80%. To explore the normal function of this vascular niche, we next examined whether benign primitive hematopoietic cells might preferentially home to these same vascular microdomains. Fluorescently-labeled stem and progenitor cells (HSPC) isolated from donor balb/c mice were injected into recipient mice and imaging was performed at multiple time points. HSPC were found to adhere to the BM microvasculature in the same restricted domains. At 70 days post-injection, HSPC had extravasated, were persistent in these perivascular areas and had undergone cell division as assessed by dye dilution. Our findings show that these microdomains serve as vascular portals around which leukemic and hematopoietic stem cells engraft, suggesting that this molecularly distinct vasculature provides both a cancer and normal stem cell niche. Specialized vascular structures therefore appear to delineate a stem cell microenvironment that is exploited by malignancy.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 374-374
Author(s):  
James A. Kennedy ◽  
Frederic Barabe ◽  
Dwayne L. Barber ◽  
John E. Dick

Abstract An activating mutation in the JAK2 tyrosine kinase has recently been identified in patients with polycythemia vera (PV), essential thrombocythemia (ET) and idiopathic myelofibrosis (IMF). However, at this time, evidence of a causative role for activated JAK2 signaling in the pathogenesis of these myeloproliferative disorders is limited. Given that these are clonal stem cell diseases, the impact of deregulated JAK-STAT signaling must be considered in the context of primitive human hematopoietic cells. To this end, a lentiviral vector encoding the TEL-JAK2 (5–19) fusion was employed to infect lineage-depleted human cord blood, resulting in constitutive activation of STAT5 as well as the ERK and PI-3 kinase signaling pathways. Interestingly, when grown in culture under conditions that normally support the exclusive production of cells from the granulopoietic and monocytic lineages, cells expressing TEL-JAK2 underwent a burst of erythropoietin (EPO)-independent erythropoiesis; an outcome that could even occur in serum-free media in the absence of supportive cytokines. Furthermore, TEL-JAK2 cells exhibited erythroid colony-forming capacity in the absence of exogeneous EPO, a hallmark of PV. In order to gain insight into the in vivo effects of activated JAK2 signaling, transduced cord blood cells were injected intrafemorally into sublethally irradiated NOD/SCID mice. When animals were sacrificed 3 weeks post-transplant, the percentage of human engraftment was comparable between TEL-JAK2 and control animals; however, total cellularity was significantly reduced in the injected femur of TEL-JAK2 mice. At 9 weeks post-transplant, this reduction in cellularity was noted not only in the injected femur, but also in distant marrow cavities. Histological examination of the bone marrow from TEL-JAK2-transplanted mice showed a decrease in cellularity, the presence of an atypical megakaryocyte population, and patent sinusoids. Most notably, reticulin staining revealed the existence of a fibrous network in the bone marrow of TEL-JAK2 mice, indicative of myelofibrotic change. Taken together, these in vitro and in vivo studies provide functional evidence that in human hematopoietic cells, activated JAK2 signaling can initiate disease processes bearing similarity to both PV and IMF. Furthermore, they provide the first example of an experimental xenotransplant model of IMF which can be utilized to provide insight into both the pathogenesis of this disease and potential therapeutic targets.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1168-1168
Author(s):  
Jerry C. Cheng ◽  
Deepa Shankar ◽  
Stanley F. Nelson ◽  
Kathleen M. Sakamoto

Abstract CREB is a nuclear transcription factor that plays an important role in regulating cellular proliferation, memory, and glucose homeostasis. We previously demonstrated that CREB is overexpressed in bone marrow cells from a subset of patients with acute leukemia at diagnosis. Furthermore, CREB overexpression is associated with an increased risk of relapse and decreased event-free survival in adult AML patients. Transgenic mice that overexpress CREB in myeloid cells developed myeloproliferative/myelodysplastic syndrome after one year. To further understand the role of CREB in leukemogenesis and in normal hematopoiesis, we employed RNA interference methods to inhibit CREB expression. To achieve sustained, CREB-specific gene knockdown in leukemia and normal hematopoietic cells, a lentiviral-based small hairpin (shRNA) approach was taken. Three CREB specific shRNAs were generated and tested for efficiency of gene knockdown in 293T cells. Knockdown efficiency approached 90 percent by Western blot analysis compared to vector alone and luciferase controls. Human myeloid leukemia cell lines, K562, TF1, and MV411, were then infected with CREB shRNA lentivirus, sorted for GFP expression, and analyzed using quantitative real time (qRT)-PCR, Western blot analysis, and growth and viability assays. Lentiviral CREB-shRNA achieved between 50 to 90 percent knockdown of CREB compared to control shRNAs at the protein and mRNA levels. To control for non-specific effects, we performed qRT-PCR analysis of the interferon response gene, OAS1, which was not upregulated in cells transduced with CREB shRNA constructs. Within 72 hours, cells transduced with CREB shRNA had decreased proliferation and survival. Similar results were obtained with murine leukemia cells (NFS60 and BA/F3 bcr-abl).To study the role of CREB in normal hematopoiesis, both primary murine and human hematopoietic cells were transduced with our shRNA constructs, and methylcellulose-based colony assays were performed. Primary hematopoietic cells infected with CREB shRNA lentivirus demonstrated a 5-fold decrease in colony number compared to control virus-infected cells (p&lt;0.05). Bone marrow colonies consisted of myeloid progenitor cells that were mostly Mac-1+ by FACs analysis. Interestingly, there were fewer differentiated cells in the CREB shRNA transduced cells compared to vector control or wild type cells, suggesting that CREB is critical for both myeloid cell proliferation and differentiation. To study the in vivo effects of CREB knockdown on leukemia progression, we studied mice injected with BA/F3 cells that express both bcr/abl with the T315I mutation and a luciferase reporter gene. BA/F3 cells expressing the T315I mutation have a 2-fold increase in CREB overexpression compared to wild-type cells. Disease progression was monitored using bioluminescence imaging with luciferin. CREB knockdown was 90 percent after transduction and prior to injection into SCID mice. We observed improved survival of mice injected with CREB shRNA transduced BA/F3 bcr-abl (T315I) compared to vector control cells. To understand the mechanism of growth suppression resulting from CREB downregulation, we performed microarray analysis with RNA from CREB shRNA transduced K562 and TF1 cells. Several genes were downregulated using a Human Affymetrix chip. Most notable was Beclin1, a tumor suppressor gene often deleted in prostate and breast cancer that has been implicated in autophagy. Our results demonstrate that CREB is required for normal and leukemic cell proliferation both in vitro and in vivo.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3659-3659
Author(s):  
Abhinav Diwan ◽  
Andrew G. Koesters ◽  
Amy M. Odley ◽  
Theodosia A. Kalfa ◽  
Gerald W. Dorn

Abstract Steady-state and dynamic regulation of erythrocyte production occurs by altering the balance of cell-survival versus apoptosis signaling in maturing erythroblasts. Previously, the pro-apoptotic factor Nix was identified as a critical death signal in normal erythropoietic homeostasis, acting in opposition to erythroblast-survival signaling by erythropoietin and Bcl-xl. However, the role of Nix in stress-erythropoiesis is not known. Here, by comparing the consequences of erythropoietin administration, acute phenylhydrazine-induced anemia, and aging in wild-type and Nix-deficient mice, we show that complete absence of Nix, or its genetic ablation specifically in hematopoietic cells, mimics the effects of erythropoietin (Epo). Both Nix ablation and Epo treatment increase early erythroblasts in spleen and bone marrow and increase the number of circulating reticulocytes, while maintaining a pool of mature erythroblasts as an “erythropoietic reserve”. As compared with WT, Nix null mice develop polycythemia more rapidly after Epo treatment, consistent with enhanced sensitivity to erythropoietin observed in vitro. After phenylhydrazine administration, anemia in Nix-deficient mice is less severe and recovers more rapidly than in WT mice, despite lower endogenous Epo levels. Anemic stress depletes mature erythroblasts in both WT and Nix null mice, but Nix null mice with basal erythroblastosis are resistant to anemic stress. These findings show that Nix null mice have greatly expanded erythroblast reserve and respond normally to Epo- and anemia-stimulated induction of erythropoiesis. However, the hematocrits of young adult Nix null mice are not elevated, and these mice paradoxically develop anemia as they age with decreased hemoglobin content (10g/dl) and hematocrit (36%; at 80±3 weeks of age) compared to WT mice (13g/dl and 46%; 82±5 weeks of age), inspite of persistent erythoblastosis observed in the bone marrow and spleen. Nix null erythrocytes, which are macrocytic and exhibit membrane abnormalities typically seen in immature cells or with accelerated erythropoiesis, demonstrate shorter life span with a half life of 5.2±0.6 days in the peripheral circulation by in vivo biotin labeling (as compared with a half life of 11.7±0.9 days in WT), and increased osmotic fragility as compared with normal erythrocytes. This suggests that production and release of large numbers of reticulocytes in Nix null mice can decrease erythrocyte survival. To rule out a non-hematopoietic consequence of Nix ablation that contributes to or causes increased erythrocyte fragility and in vivo consumption, such as primary hypersplenism, we undertook Tie2-Cre mediated conditional Nix gene ablation. Nixfl/fl + Tie2-Cre mice (hematopoietic-cell specific Nix null) develop erythroblastosis with splenomegaly, reticulocytosis, absence of polycythemia and increased erythrocyte fragility; suggesting that erythroblastosis and accelerated erythrocyte turnover are a primary consequence of Nix ablation in hematopoietic cells. Hence, dis-inhibition of erythropoietin-mediated erythroblast survival pathways by Nix ablation enhances steady-state and stress-mediated erythropoiesis.


Sign in / Sign up

Export Citation Format

Share Document