Tremadocian (Lower Ordovician) sea-level changes and biotas on the Avalon microcontinent

2011 ◽  
Vol 85 (4) ◽  
pp. 678-694 ◽  
Author(s):  
ED Landing ◽  
Richard A. Fortey

The Chesley Drive Group, an Upper Cambrian-Lower Ordovician mudstone-dominated unit, is part of the Ediacaran–Ordovician cover sequence on the North American part of the Avalon microcontinent. The upper Chesley Drive Group on McLeod Brook, Cape Breton Island (previously “McLeod Brook Formation”), has two lithofacies-specific Tremadocian biotas. An older low-diversity benthic assemblage (shallow burrowers, Bathysiphon, phosphatic brachiopods, asaphid trilobites) is in lower upper Tremadocian green-gray mudstone. This wave-influenced, slightly dysoxic facies has Bathysiphon–brachiopod shell lags in ripple troughs. The upper fauna (ca. 483 +/- 1 Ma) is in dysoxic-anoxic (d-a), unburrowed, dark gray-black, upper upper (but not uppermost) Tremadocian mudstone with a “mass kill” of the olenid Peltocare rotundifrons (Matthew)—a provincial trilobite in Avalonian North America that likely tolerated low oxygen bottom waters. Scandodus avalonensis Landing n. sp. and Lagenochitina aff. conifundus (Poumot), probable nektic elements and the first upper Tremadocian conodont and chitinozoan reported from Avalon, occur in diagenetic calcareous nodules in the dark gray-black mudstone. An upper Tremadocian transition from lower greenish to upper black mudstone is not exposed on McLeod Brook, but is comparable to a coeval green-black mudstone transition in Avalonian England. The successions suggest that late late Tremadocian (probable Baltic Hunnebergian Age) sea level was higher in Avalon than is suggested from successions on other paleocontinents. The Tremadocian sea-level history of Avalon was a shoaling-deepening-shoaling sequence from d-a black mudstone (lower Tremadocian), to dysoxic green mudstone (lower upper Tremadocian), and back to black mudstone (upper upper Tremadocian).Scandodus Lindström is emended, with the early species S. avalonensis Landing n. sp. assigned to the emended Family Protopanderodontidae. Triangulodus Van Wamel is considered a junior synonym of Scandodus. Peltocare rotundifrons is emended on the basis of complete specimens.

2021 ◽  
Author(s):  
◽  
Lisa McCarthy

<p>The Branch Sandstone is located within an overall transgressive, marine sedimentary succession in Marlborough, on the East Coast of New Zealand’s South Island. It has previously been interpreted as an anomalous sedimentary unit that was inferred to indicate abrupt and dramatic shallowing. The development of a presumed short-lived regressive deposit was thought to reflect a change in relative sea level, which had significant implications for the geological history of the Marlborough region, and regionally for the East Coast Basin.  The distribution and lithology of Branch Sandstone is described in detail from outcrop studies at Branch Stream, and through the compilation of existing regional data. Two approximately correlative sections from the East Coast of the North Island (Tangaruhe Stream and Angora Stream) are also examined to provide regional context. Depositional environments were interpreted using sedimentology and palynology, and age control was developed from dinoflagellate biostratigraphy. Data derived from these methods were combined with the work of previous authors to establish depositional models for each section which were then interpreted in the context of relative sea level fluctuations.  At Branch Stream, Branch Sandstone is interpreted as a shelfal marine sandstone, that disconformably overlies Herring Formation. The Branch Sandstone is interpreted as a more distal deposit than uppermost Herring Formation, whilst the disconformity is suggested to have developed during a fall in relative sea level. At Branch Stream, higher frequency tectonic or eustatic sea-level changes can therefore be distinguished within a passive margin sedimentary sequence, where sedimentation broadly reflects subsidence following rifting of the Tasman Sea. Development of a long-lived disconformity at Tangaruhe Stream and deposition of sediment gravity flow deposits at Angora Stream occurred at similar times to the fall in relative sea level documented at the top of the Herring Formation at Branch Stream. These features may reflect a basin-wide relative sea-level event, that coincides with global records of eustatic sea level fall.</p>


2021 ◽  
Author(s):  
◽  
Lisa McCarthy

<p>The Branch Sandstone is located within an overall transgressive, marine sedimentary succession in Marlborough, on the East Coast of New Zealand’s South Island. It has previously been interpreted as an anomalous sedimentary unit that was inferred to indicate abrupt and dramatic shallowing. The development of a presumed short-lived regressive deposit was thought to reflect a change in relative sea level, which had significant implications for the geological history of the Marlborough region, and regionally for the East Coast Basin.  The distribution and lithology of Branch Sandstone is described in detail from outcrop studies at Branch Stream, and through the compilation of existing regional data. Two approximately correlative sections from the East Coast of the North Island (Tangaruhe Stream and Angora Stream) are also examined to provide regional context. Depositional environments were interpreted using sedimentology and palynology, and age control was developed from dinoflagellate biostratigraphy. Data derived from these methods were combined with the work of previous authors to establish depositional models for each section which were then interpreted in the context of relative sea level fluctuations.  At Branch Stream, Branch Sandstone is interpreted as a shelfal marine sandstone, that disconformably overlies Herring Formation. The Branch Sandstone is interpreted as a more distal deposit than uppermost Herring Formation, whilst the disconformity is suggested to have developed during a fall in relative sea level. At Branch Stream, higher frequency tectonic or eustatic sea-level changes can therefore be distinguished within a passive margin sedimentary sequence, where sedimentation broadly reflects subsidence following rifting of the Tasman Sea. Development of a long-lived disconformity at Tangaruhe Stream and deposition of sediment gravity flow deposits at Angora Stream occurred at similar times to the fall in relative sea level documented at the top of the Herring Formation at Branch Stream. These features may reflect a basin-wide relative sea-level event, that coincides with global records of eustatic sea level fall.</p>


2009 ◽  
Vol 46 (6) ◽  
pp. 403-423 ◽  
Author(s):  
Karem Azmy ◽  
Denis Lavoie

The Lower Ordovician St. George Group of western Newfoundland consists mainly of shallow-marine-platform carbonates (∼500 m thick). It is formed, from bottom to top, of the Watts Bight, Boat Harbour, Catoche, and Aguathuna formations. The top boundary of the group is marked by the regional St. George Unconformity. Outcrops and a few cores from western Newfoundland were sampled at high resolution and the extracted micritic materials were investigated for their petrographic and geochemical criteria to evaluate their degree of preservation. The δ13C and δ18O values of well-preserved micrite microsamples range from –4.2‰ to 0‰ (VPDB) and from –11.3‰ to –2.9‰ (VPDB), respectively. The δ13Ccarb profile of the St. George Group carbonates reveals several negative shifts, which vary between ∼2‰ and 3‰ and are generally associated with unconformities–disconformities or thin shale interbeds, thus reflecting the effect of or link with significant sea-level changes. The St. George Unconformity is associated with a negative δ13Ccarb shift (∼2‰) on the profile and correlated with major lowstand (around the end of Arenig) on the local sea-level reconstruction and also on those from the Baltic region and central Australia, thus suggesting that the St. George Group Unconformity might have likely had an eustatic component that contributed to the development–enhancement of the paleomargin. Other similar δ13Ccarb shifts have been recorded on the St. George profile, but it is hard to evaluate their global extension due to the low resolution of the documented global Lower Ordovician (Tremadoc – middle Arenig) δ13Ccarb profile.


2015 ◽  
Vol 28 (11) ◽  
pp. 4585-4594 ◽  
Author(s):  
Tatsuo Suzuki ◽  
Masayoshi Ishii

Abstract Using historical ocean hydrographic observations, decadal to multidecadal sea level changes from 1951 to 2007 in the North Pacific were investigated focusing on vertical density structures. Hydrographically, the sea level changes could reflect the following: changes in the depth of the main pycnocline, density gradient changes across the pycnocline, and modification of the water mass density structure within the pycnocline. The first two processes are characterized as the first baroclinic mode. The changes in density stratification across the pycnocline are sufficiently small to maintain the vertical profile of the first baroclinic mode in this analysis period. Therefore, the first mode should represent mainly the dynamical response to the wind stress forcing. Meanwhile, changes in the composite of all modes of order greater than 1 (remaining baroclinic mode) can be attributed to water mass modifications above the pycnocline. The first baroclinic mode is associated with 40–60-yr fluctuations in the subtropical gyre and bidecadal fluctuations of the Kuroshio Extension (KE) in response to basin-scale wind stress changes. In addition to this, the remaining baroclinic mode exhibits strong variability around the recirculation region south of the KE and regions downstream of the KE, accompanied by 40–60-yr and bidecadal fluctuations, respectively. These fluctuations follow spinup/spindown of the subtropical gyre and meridional shifts of the KE shown in the first mode, respectively. A lag correlation analysis suggests that interdecadal sea level changes due to water mass density changes are a secondary consequence of changes in basin-scale wind stress forcing related to the ocean circulation changes associated with the first mode.


2016 ◽  
Vol 155 (3) ◽  
pp. 729-746 ◽  
Author(s):  
SHERIF FAROUK ◽  
SREEPAT JAIN

AbstractThe Maastrichtian–Danian benthic foraminiferal diversity and assemblages through sequence stratigraphy were studied at Dakhla Oasis, Egypt. Benthic foraminifera numbers (BFN), high-flux species and characteristic benthic foraminiferal species and genera distribution are also incorporated to assess palaeobathymetry, palaeoenvironment and palaeoproductivity. All these proxies are then taken together to construct a sea-level curve and interpreted in terms of regional tectonics, climate and eustasy. Data suggest a remarkably highly equitable benthic environment deposited in a brackish littoral and/or marsh setting with moderate (?) to low oxygen conditions and reduced salinity (oligotrophic), possibly due to increased precipitation and terrestrial runoff. The interrupted dominance of calcareous forms and high-organic-flux species suggests occasional marine incursions and high palaeoproductivity, due to local upwelling. The inferred sea-level curve replicates the global eustatic curve and suggests that the curve is more influenced by the prevailing climate and global eustasy rather than by regional tectonics. The post-Cretaceous–Palaeogene boundary displays improvement in the environment in terms of diversity and number of species and specimens, with a marked reduction in the abundance of high-organic-flux species during early Paleocene (Danian) time, indicating a shift from a more mesotrophic open marine environment to much reduced oligotrophic conditions.


2003 ◽  
Vol 50 ◽  
pp. 105-114
Author(s):  
T. Hansen ◽  
A.T. Nielsen

Over 5000 trilobites have been collected from Lower Ordovician rocks exposed at the Lynna River in the Volkhov region, east of St. Petersburg, Russia. Bed-by-bed sampling has been carried out through the upper part of Volkhov Formation (top of Jeltiaki Member and the entire Frizy Member), the Lynna Formation and the basal part of the Obukhovo Formation. This interval, which is 7.5 metres thick, correlates with the upper part of the Arenig Series, and presumably even ranges into the very base of the Llanvirn. A preliminary biostratigraphical investigation of top Jeltiaki Member (BIIβ), Frizy Member (BIIγ) and basal Lynna Formation (BIIIα) reveals a rather continuous faunal turnover lacking sharp boundaries, and the biostratigraphical zonation (BIIβ–BIIIα) is primarily defined by the index trilobite taxa. The trilobite ranges are generally in agreement with the pattern described by Schmidt in 1907. The abundance ratio between Asaphus and the ptychopygids seems to be related to changes in relative sea level with Asaphus preferring the most shallow water conditions. A tentative interpretation of sea-level changes suggests an initial drowning at the base of BIIγ, immediately followed by a lowstand that in turn was succeeded by a moderate sea-level rise and then a significant fall. The last marks the BIIγ/BIIIα boundary. Correlation with sections in Scandinavia suggests that the basal part of BIIγ is strongly condensed.


Clay Minerals ◽  
1993 ◽  
Vol 28 (1) ◽  
pp. 61-84 ◽  
Author(s):  
M. Thiry ◽  
T. Jacquin

AbstractThe distribution of clay minerals from the N and S Atlantic Cretaceous deep-sea sediments is related to rifting, sea-floor spreading, sea-level variations and paleoceanography. Four main clay mineral suites were identified: two are inherited and indicative of ocean geodynamics, whereas the others result from transformation and authigenesis and are diagnostic of Cretaceous oceanic depositional environments. Illite and chlorite, together with interstratified illite-smectite and smectite occur above the sea-floor basalts and illustrate the contribution of volcanoclastic materials of basaltic origin to the sediments. Kaolinite, with variable amounts of illite, chlorite, smectite and interstratified minerals, indicates detrital inputs from continents near the platform margins. Kaolinite decreases upward in the series due to open marine environments and basin deepening. It may increase in volume during specific time intervals corresponding to periods of falling sea-level during which overall facies regression and erosion of the surrounding platforms occurred. Smectite is the most abundant clay mineral in the Cretaceous deep-sea sediments. Smectite-rich deposits correlate with periods of relatively low sedimentation rates. As paleoweathering profiles and basal deposits at the bottom of Cretaceous transgressive formations are mostly kaolinitic, smectite cannot have been inherited from the continents. Smectite is therefore believed to have formed in the ocean by transformation and recrystallization of detrital materials during early diagenesis. Because of the slow rate of silicate reactions, transformation of clay minerals requires a long residence time of the particles at the water/sediment interface; this explains the relationships between the observed increases in smectite with long-term sea-level rises that tend to starve the basinal settings of sedimentation. Palygorskite, along with dolomite, is relatively common in the N and S Atlantic Cretaceous sediments. It is not detrital because correlative shelf deposits are devoid of palygorskite. Palygorskite is diagnostic of Mg-rich environments and is indicative of the warm and hypersaline bottom waters of the Cretaceous Atlantic ocean.


Author(s):  
Jan Zalasiewicz

In almost everybody’s natural lifetime, the sea is one of the great unchanging certainties of life. There is land; there is sea; and in between is that magical place, the seaside, which is sometimes knocked about a bit by the waves, but always manages to recover for that next idyllic summer. There are, one remembers, those faintly disquieting legends, about a remarkably well-organized and ecologically aware person called Noah, and about a Deluge. But these, of course, should not be taken seriously. They were a jumpy and superstitious lot, our ancestors, always prone to making up scary stories. It was a good way to keep the children in order. With a longer perspective, things seem a little different. Take any one location on the globe, for instance. Track it over millions of years. At that one location, there may be a change from deep ocean, to shallow sea, to a shoreline, and thence to terrestrial swamps and flood plains. And then, perhaps, to the absence of evidence, a horizon of absolutely no thickness at all within a succession of rock strata, in which a million years or a hundred million years—or more—may be missing, entirely unrecorded. It is that phenomenon called an unconformity, all that is left of the history of a terrestrial landscape pushed up into the erosional realm. On that eroding landscape, there may have been episodes of battle, murder, and sudden death among armoured saurians, of fire, flood, and storm, and of the humdrum day-to-day life of the vast vegetarian dinosaurs, chewing through their daily hundredweights of plants. Of this, no trace can persist. Only when that landscape is plunged again towards sea level, and begins to be silted up, can a tangible geological record resume. The Earth’s crust, as we have seen, is malleable, can be pushed downwards or thrust upwards by the forces that drive the continents across the face of the globe. Many of the sea level changes that can be read in the strata of the archives are of this sort, and mark purely local ups and downs of individual sections of crust, with no evidence that global sea level was anything other than constant.


1992 ◽  
Vol 6 ◽  
pp. 149-149
Author(s):  
Jisuo Jin

Three rhynchonellid brachiopod genera, Hiscobeccus, Lepidocyclus, and Hypsiptycha, are the most diagnostic elements of the Lepidocyclus fauna of North America in Late Ordovician time. These are characterized by relatively large, strongly biconvex to globular shells with coarse imbricating growth lamellae and, internally, with septiform cardinal processes in brachial valves. Among the three genera, Hiscobeccus appears the earliest, now known from rocks of late Trentonian-Edenian age in the Canadian Rocky Mountains and Mackenzie Mountains. Morphologically, Hiscobeccus is distinguished from the other two genera by its open delthyrium in the pedicle valve. Early forms of Hiscobeccus show close morphological similarity to Rhynchotrema in their non-globular biconvex shells covered by strong growth lamellae only in the anterior portions. It has been suggested that Hiscobeccus evolved from the Rhynchotrema wisconsinense stock through increase in shell size, globosity, and strength of growth lamellae. Earliest species of Rhynchotrema has been documented convincingly from rocks of early Trentonian age, and the derivation of Hiscobeccus most likely took place during the mid-Trentonian. Lepidocyclus and Hypsiptycha evolved from either Rhynchotrema or Hiscobeccus by developing a pair of deltidial plates covering the delthyrium.Rhynchotrema and other rhynchonellids that evolved before mid-Trentonian time are common to the North American (Laurentian) and the Siberia-Kazakhstan paleocontinents. In contrast, Hiscobeccus, Lepidocyclus, and Hypsiptycha that evolved after the mid-Trentonian are virtually restricted to Laurentia. Therefore, Rhynchotrema marked the last successful intercontinental migration of rhynchonellids during their Llandeilian-Caradocian cosmopolitanism. The pronounced provincialism of the North American Lepidocyclus fauna may have been caused by a number of factors. Facies control is not likely the explanation because these rhynchonellids occur in nearly all the inland and marginal platform seas of Laurentia and commonly are found together in the same types of rocks. Plate tectonics and sea-level changes are considered major causes. The Ordovician rhynchonellids lived in shallow marine (intertidal-subtidal) environments and were incapable of crossing vast, deep oceanic barriers because of their sedentary mode of life and short-lived motile larval stages. The widening of the ocean between North America and Siberia, coupled with high sea-level stand, may have created a sufficiently wide oceanic barrier to interrupt faunal mixing between the two paleocontinents by late Trentonian time. Moreover, the rise in sea level would have resulted in the disappearance of island faunas, which could have served as stepping stones for intercontinental migration of shallow-water benthic faunas during low sea-level stand.


Sign in / Sign up

Export Citation Format

Share Document