The EGF-CFC family: novel epidermal growth factor-related proteins in development and cancer.

2000 ◽  
pp. 199-226 ◽  
Author(s):  
D S Saloman ◽  
C Bianco ◽  
A D Ebert ◽  
N I Khan ◽  
M De Santis ◽  
...  

The EGF-CFC gene family encodes a group of structurally related proteins that serve as important competence factors during early embryogenesis in Xenopus, zebrafish, mice and humans. This multigene family consists of Xenopus FRL-1, zebrafish one-eyed-pinhead (oep), mouse cripto (Cr-1) and cryptic, and human cripto (CR-1) and criptin. FRL-1, oep and mouse cripto are essential for the formation of mesoderm and endoderm and for correct establishment of the anterior/posterior axis. In addition, oep and cryptic are important for the establishment of left-right (L/R) asymmetry. In zebrafish, there is strong genetic evidence that oep functions as an obligatory co-factor for the correct signaling of a transforming growth factor-beta (TGFbeta)-related gene, nodal, during gastrulation and during L/R asymmetry development. Expression of Cr-1 and cryptic is extinguished in the embryo after day 8 of gestation except for the developing heart where Cr-1 expression is necessary for myocardial development. In the mouse, cryptic is not expressed in adult tissues whereas Cr-1 is expressed at a low level in several different tissues including the mammary gland. In the mammary gland, expression of Cr-1 in the ductal epithelial cells increases during pregnancy and lactation and immunoreactive and biologically active Cr-1 protein can be detected in human milk. Overexpression of Cr-1 in mouse mammary epithelial cells can facilitate their in vitro transformation and in vivo these Cr-1-transduced cells produce ductal hyperplasias in the mammary gland. Recombinant mouse or human cripto can enhance cell motility and branching morphogenesis in mammary epithelial cells and in some human tumor cells. These effects are accompanied by an epithelial-mesenchymal transition which is associated with a decrease in beta-catenin function and an increase in vimentin expression. Expression of cripto is increased several-fold in human colon, gastric, pancreatic and lung carcinomas and in a variety of different types of mouse and human breast carcinomas. More importantly, this increase can first be detected in premalignant lesions in some of these tissues. Although a specific receptor for the EGF-CFC proteins has not yet been identified, oep depends upon an activin-type RIIB and RIB receptor system that functions through Smad-2. Mouse and human cripto have been shown to activate a ras/raf/MAP kinase signaling pathway in mammary epithelial cells. Activation of phosphatidylinositol 3-kinase and Akt are also important for the ability of CR-1 to stimulate cell migration and to block lactogenic hormone-induced expression of beta-casein and whey acidic protein. In mammary epithelial cells, part of these responses may depend on the ability of CR-1 to transactivate erb B-4 and/or fibroblast growth factor receptor 1 through an src-like tyrosine kinase.

1998 ◽  
Vol 140 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Yohei Hirai ◽  
André Lochter ◽  
Sybille Galosy ◽  
Shogo Koshida ◽  
Shinichiro Niwa ◽  
...  

Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.


2002 ◽  
Vol 22 (8) ◽  
pp. 2586-2597 ◽  
Author(s):  
Caterina Bianco ◽  
Heather B. Adkins ◽  
Christian Wechselberger ◽  
Masaharu Seno ◽  
Nicola Normanno ◽  
...  

ABSTRACT Cripto-1 (CR-1), an epidermal growth factor-CFC (EGF-CFC) family member, has a demonstrated role in embryogenesis and mammary gland development and is overexpressed in several human tumors. Recently, EGF-CFC proteins were implicated as essential signaling cofactors for Nodal, a transforming growth factor β family member whose expression has previously been defined as embryo specific. To identify a receptor for CR-1, a human brain cDNA phage display library was screened using CR-1 protein as bait. Phage inserts with identity to ALK4, a type I serine/threonine kinase receptor for Activin, were identified. CR-1 binds to cell surface ALK4 expressed on mammalian epithelial cells in fluorescence-activated cell sorter analysis, as well as by coimmunoprecipitation. Nodal is coexpressed with mouse Cr-1 in the mammary gland, and CR-1 can phosphorylate the transcription factor Smad-2 in EpH-4 mammary epithelial cells only in the presence of Nodal and ALK4. In contrast, CR-1 stimulation of mitogen-activated protein kinase and AKT in these cells is independent of Nodal and ALK4, suggesting that CR-1 may modulate different signaling pathways to mediate its different functional roles.


Development ◽  
1998 ◽  
Vol 125 (7) ◽  
pp. 1285-1294 ◽  
Author(s):  
J.J. Wysolmerski ◽  
W.M. Philbrick ◽  
M.E. Dunbar ◽  
B. Lanske ◽  
H. Kronenberg ◽  
...  

Parathyroid hormone-related protein (PTHrP) was originally discovered as a tumor product that causes humoral hypercalcemia of malignancy. PTHrP is now known to be widely expressed in normal tissues and growing evidence suggests that it is an important developmental regulatory molecule. We had previously reported that overexpression of PTHrP in the mammary glands of transgenic mice impaired branching morphogenesis during sexual maturity and early pregnancy. We now demonstrate that PTHrP plays a critical role in the epithelial-mesenchymal communications that guide the initial round of branching morphogenesis that occurs during the embryonic development of the mammary gland. We have rescued the PTHrP-knockout mice from neonatal death by transgenic expression of PTHrP targeted to chondrocytes. These rescued mice are devoid of mammary epithelial ducts. We show that disruption of the PTHrP gene leads to a failure of the initial round of branching growth that is responsible for transforming the mammary bud into the rudimentary mammary duct system. In the absence of PTHrP, the mammary epithelial cells degenerate and disappear. The ability of PTHrP to support embryonic mammary development is a function of amino-terminal PTHrP, acting via the PTH/PTHrP receptor, for ablation of the PTH/PTHrP receptor gene recapitulates the phenotype of PTHrP gene ablation. We have localized PTHrP expression to the embryonic mammary epithelial cells and PTH/PTHrP receptor expression to the mammary mesenchyme using in situ hybridization histochemistry. Finally, we have rescued mammary gland development in PTHrP-null animals by transgenic expression of PTHrP in embryonic mammary epithelial cells. We conclude that PTHrP is a critical epithelial signal received by the mammary mesenchyme and involved in supporting the initiation of branching morphogenesis.


2012 ◽  
Vol 23 (19) ◽  
pp. 3873-3881 ◽  
Author(s):  
Maryline Allegra ◽  
Andreas Zaragkoulias ◽  
Elena Vorgia ◽  
Marina Ioannou ◽  
Gabriele Litos ◽  
...  

Epithelial-to-mesenchymal transition (EMT) is a key process in cancer progression and metastasis, requiring cooperation of the epidermal growth factor/Ras with the transforming growth factor-β (TGF-β) signaling pathway in a multistep process. The molecular mechanisms by which Ras signaling contributes to EMT, however, remain elusive to a large extent. We therefore examined the transcriptional repressor Ets2-repressor factor (ERF)—a bona fide Ras–extracellular signal-regulated kinase/mitogen-activated protein kinase effector—for its ability to interfere with TGF-β–induced EMT in mammary epithelial cells (EpH4) expressing oncogenic Ras (EpRas). ERF-overexpressing EpRas cells failed to undergo TGF-β–induced EMT, formed three-dimensional tubular structures in collagen gels, and retained expression of epithelial markers. Transcriptome analysis indicated that TGF-β signaling through Smads was mostly unaffected, and ERF suppressed the TGF-β–induced EMT via Semaphorin-7a repression. Forced expression of Semaphorin-7a in ERF-overexpressing EpRas cells reestablished their ability to undergo EMT. In contrast, inhibition of Semaphorin-7a in the parental EpRas cells inhibited their ability to undergo TGF-β–induced EMT. Our data suggest that oncogenic Ras may play an additional role in EMT via the ERF, regulating Semaphorin-7a and providing a new interconnection between the Ras- and the TGF-β–signaling pathways.


2013 ◽  
Vol 3 (1) ◽  
pp. 160-168
Author(s):  
M Mukesh ◽  
Umesh Kumar Shandilya ◽  
Monika Sodhi ◽  
Ankita Sharma ◽  
Neha Kapila

Understanding the mechanisms of the development of the mammary gland can increase the efficiency of milk production, as well as improve animal health. Mammary epithelial cells (MEC) are the functional unit of the mammary gland. Although, there is a well-established MEC cell line, known as MAC-T, the use of a primary cell line is preferred because it more closely mimics an in vivo model. This review focuses on utilization of MECs as a potential in vitro model to better understand mammary gland functions in livestock species. Recently, considerable advances in three dimensional modeling of the mammary gland have been made with the used of extracellular matrix for the study of branching morphogenesis which may enable rapid advances in our understanding of mammary gland biology. Progress in the exploitation of MECs as in vitro model is more productive than ever, however further research is vital.    


Sign in / Sign up

Export Citation Format

Share Document