scholarly journals Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-α activity

2008 ◽  
Vol 40 (4) ◽  
pp. 173-184 ◽  
Author(s):  
Ross S Thomas ◽  
Naveed Sarwar ◽  
Fladia Phoenix ◽  
R Charles Coombes ◽  
Simak Ali

Phosphorylation of estrogen receptor-α (ERα) at specific residues in transcription activation function 1 (AF-1) can stimulate ERα activity in a ligand-independent manner. This has led to the proposal that AF-1 phosphorylation and the consequent increase in ERα activity could contribute to resistance to endocrine therapies in breast cancer patients. Previous studies have shown that serine 118 (S118) in AF-1 is phosphorylated by extracellular signal-regulated kinases 1 and 2 (Erk1/2) mitogen-activated protein kinase (MAPK) in a ligand-independent manner. Here, we show that serines 104 (S104) and 106 (S106) are also phosphorylated by MAPK in vitro and upon stimulation of MAPK activity in vivo. Phosphorylation of S104 and S106 can be inhibited by the MAP-erk kinase (MEK)1/2 inhibitor U0126 and by expression of kinase-dead Raf1. Further, we show that, although S118 is important for the stimulation of ERα activity by the selective ER modulator 4-hydroxytamoxifen (OHT), S104 and S106 are also required for the agonist activity of OHT. Acidic amino acid substitution of S104 or S106 stimulates ERα activity to a greater extent than the equivalent substitution at S118, suggesting that phosphorylation at S104 and S106 is important for ERα activity. Collectively, these data indicate that the MAPK stimulation of ERα activity involves the phosphorylation not only of S118 but also of S104 and S106, and that MAPK-mediated hyperphosphorylation of ERα at these sites may contribute to resistance to tamoxifen in breast cancer.

Endocrinology ◽  
2016 ◽  
Vol 157 (8) ◽  
pp. 3149-3156 ◽  
Author(s):  
Elin M. Grissom ◽  
Jill M. Daniel

In the absence of ovarian estrogens, increased levels of estrogen receptor (ER)α in the hippocampus are associated with improvements in cognition. In vitro evidence indicates that under conditions of low estrogen, growth factors, including Insulin-Like Growth Factor 1 (IGF-1), can activate ERα and regulate ERα-mediated transcription through mechanisms that likely involve modification of phosphorylation sites on the receptor. The goal of the current work was to investigate a role for IGF-1 in ligand-independent activation of ERα in the hippocampus of female rats. Ovariectomized rats received a single intracerebroventricular infusion of IGF-1 and hippocampi were collected 1 or 24 hours later. After 1 h, IGF-1 increased hippocampal levels of phosphorylated ERα at serine 118 (S118) as revealed by Western blotting. Coimmunoprecipitation revealed that at 1 hour after infusion, IGF-1 increased association between ERα and steroid receptor coactivator 1, a histone acetyltransferase that increases transcriptional activity of phosphorylated ERα. IGF-1 infusion increased levels of the ERα-regulated proteins ERα, choline acetyltransferase, and brain-derived neurotrophic factor in the hippocampus 24 hours after infusion. Results indicate that IGF-1 activates ERα in ligand-independent manner in the hippocampus via phosphorylation at S118 resulting in increased association of ERα with steroid receptor coactivator 1 and elevation of ER-regulated proteins. To our knowledge, these data are the first in vivo evidence of ligand-independent actions of ERα and provide a mechanism by which ERα can impact memory in the absence of ovarian estrogens.


1999 ◽  
Vol 19 (8) ◽  
pp. 5363-5372 ◽  
Author(s):  
Hideki Endoh ◽  
Kazunori Maruyama ◽  
Yoshikazu Masuhiro ◽  
Yoko Kobayashi ◽  
Masahide Goto ◽  
...  

ABSTRACT The estrogen receptor (ER) regulates the expression of target genes in a ligand-dependent manner. The ligand-dependent activation function AF-2 of the ER is located in the ligand binding domain (LBD), while the N-terminal A/B domain (AF-1) functions in a ligand-independent manner when isolated from the LBD. AF-1 and AF-2 exhibit cell type and promoter context specificity. Furthermore, the AF-1 activity of the human ERα (hERα) is enhanced through phosphorylation of the Ser118 residue by mitogen-activated protein kinase (MAPK). From MCF-7 cells, we purified and cloned a 68-kDa protein (p68) which interacted with the A/B domain but not with the LBD of hERα. Phosphorylation of hERα Ser118 potentiated the interaction with p68. We demonstrate that p68 enhanced the activity of AF-1 but not AF-2 and the estrogen-induced as well as the anti-estrogen-induced transcriptional activity of the full-length ERα in a cell-type-specific manner. However, it did not potentiate AF-1 or AF-2 of ERβ, androgen receptor, retinoic acid receptor alpha, or mineralocorticoid receptor. We also show that the RNA helicase activity previously ascribed to p68 is dispensable for the ERα AF-1 coactivator activity and that p68 binds to CBP in vitro. Furthermore, the interaction region for p68 in the ERα A/B domain was essential for the full activity of hERα AF-1. Taken together, these findings show that p68 acts as a coactivator specific for the ERα AF-1 and strongly suggest that the interaction between p68 and the hERα A/B domain is regulated by MAPK-induced phosphorylation of Ser118.


1998 ◽  
Vol 18 (4) ◽  
pp. 1978-1984 ◽  
Author(s):  
Peteranne B. Joel ◽  
Jeffrey Smith ◽  
Thomas W. Sturgill ◽  
Tracey L. Fisher ◽  
John Blenis ◽  
...  

ABSTRACT The estrogen receptor α (ER), a member of the steroid receptor superfamily, contains an N-terminal hormone-independent transcriptional activation function (AF-1) and a C-terminal hormone-dependent transcriptional activation function (AF-2). Here, we used in-gel kinase assays to determine that pp90rsk1 activated by either epidermal growth factor (EGF) or phorbol myristate acetate specifically phosphorylates Ser-167 within AF-1. In vitro kinase assays demonstrated that pp90rsk1 phosphorylates the N terminus of the wild-type ER but not of a mutant ER in which Ser-167 was replaced by Ala. In vivo, EGF stimulated phosphorylation of Ser-167 as well as Ser-118. Ectopic expression of active pp90rsk1increased the level of phosphorylation of Ser-167 compared to that of either a mutant pp90rsk1, which is catalytically inactive in the N-terminal kinase domain, or to that of vector control. The ER formed a stable complex with the mutant pp90rsk1in vivo. Transfection of the mutant pp90rsk1 depressed ER-dependent transcription of both a wild-type ER and a mutant ER that had a defective AF-2 domain (ER TAF-1). Furthermore, replacing either Ser-118 or Ser-167 with Ala in ER TAF-1 showed similar decreases in transcription levels. A double mutant in which both Ser-118 and Ser-167 were replaced with Ala demonstrated a further decrease in transcription compared to either of the single mutations. Taken together, our results strongly suggest that pp90rsk1 phosphorylates Ser-167 of the human ER in vivo and that Ser-167 aids in regulating the transcriptional activity of AF-1 in the ER.


2020 ◽  
Author(s):  
Gaia Bianco ◽  
Mairene Coto-Llerena ◽  
John Gallon ◽  
Stephanie Taha-Mehlitz ◽  
Venkatesh Kancherla ◽  
...  

SummarySynthetic lethal interactions, where the simultaneous but not individual inactivation of two genes is lethal to the cell, have been successfully exploited to treat cancer. GATA3 is frequently mutated in estrogen receptor (ER)-positive breast cancers and its deficiency defines a subset of patients with poor response to hormonal therapy and poor prognosis. However, GATA3 is not targetable. Here we show that GATA3 and MDM2 are synthetically lethal in ER-positive breast cancer. Depletion and pharmacological inhibition of MDM2 induce apoptosis in GATA3-deficient models in vitro, in vivo and in patient-derived organoids (PDOs) harboring GATA3 somatic mutation. The synthetic lethality requires p53 and acts via the PI3K/Akt/mTOR pathway. Our results present MDM2 as a novel therapeutic target in the substantial cohort of ER-positive, GATA3-mutant breast cancer patients. With MDM2 inhibitors widely available, our findings can be rapidly translated into clinical trials to evaluate in-patient efficacy.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1511
Author(s):  
Ho Tsoi ◽  
Ellen P. S. Man ◽  
Ka Man Chau ◽  
Ui-Soon Khoo

Breast cancer is the most common female cancer. About 70% of breast cancer patients are estrogen receptor α (ERα) positive (ER+) with tamoxifen being the most commonly used anti-endocrine therapy. However, up to 50% of patients who receive tamoxifen suffer recurrence. We previously identified BQ323636.1 (BQ), a novel splice variant of NCOR2, can robustly predict tamoxifen resistance in ER+ primary breast cancer. Here we show that BQ can enhance IL-6/STAT3 signalling. We demonstrated that through interfering with NCOR2 suppressive activity, BQ favours the binding of ER to IL-6 promoter and the binding of NF-ĸB to IL-6 receptor (IL-6R) promoter, leading to the up-regulation of both IL-6 and IL-6R and thus the activation of STAT3. Knockdown of IL-6R could compromise tamoxifen resistance mediated by BQ. Furthermore, Tocilizumab (TCZ), an antibody that binds to IL-6R, could effectively reverse tamoxifen resistance both in vitro and in vivo. Analysis of clinical breast cancer samples confirmed that IL-6R expression was significantly associated with BQ expression and tamoxifen resistance in primary breast cancer, with high IL-6R expression correlating with poorer survival. Multivariate Cox-regression analysis confirmed that high IL-6R expression remained significantly associated with poor overall as well as disease-specific survival in ER+ breast cancer.


2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.


Oncogene ◽  
2021 ◽  
Author(s):  
Pengpeng Zhu ◽  
Fang He ◽  
Yixuan Hou ◽  
Gang Tu ◽  
Qiao Li ◽  
...  

AbstractThe hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors. However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we identified a hypoxia-induced long noncoding RNA (lncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced lncRNA KB-1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both in vitro and in vivo. Mechanistically, lncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to form a lncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In conclusion, we confirm that lncRNA KB-1980E6.3 maintains the stemness of BCSCs through lncRNA KB-1980E6.3/IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic tumors.


2009 ◽  
Vol 100 (6) ◽  
pp. 1012-1017 ◽  
Author(s):  
Saori Tomita ◽  
Zhenhuan Zhang ◽  
Masahiro Nakano ◽  
Mutsuko Ibusuki ◽  
Teru Kawazoe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document