Modulation of human DNA methyltransferase activity and mRNA levels in the monoblast cell line U937 induced to differentiate with dibutyryl cyclic AMP and phorbol ester

1993 ◽  
Vol 11 (2) ◽  
pp. 191-200 ◽  
Author(s):  
P Soultanas ◽  
P D Andrews ◽  
D R Burton ◽  
D P Hornby

ABSTRACT The regulation of DNA (cytosine-5) methyltransferase (DNA MeTase) enzyme activity and gene expression was examined in the monoblastoid U937 cell line induced to differentiate with either dibutyryl cyclic AMP (dbcAMP) or phorbol ester. dbcAMP treatment was found to cause the rapid (<4 h) suppression of DNA MeTase specific activity, with no DNA MeTase activity detectable after 10 h. Equally, no DNA MeTase activity was detectable in nuclear extracts of fresh peripheral blood monocytes. Using both a U937 DNA MeTase cDNA and a mouse DNA MeTase cDNA as probes, steady-state levels of DNA MeTase mRNA were found to decline sharply between 4 and 15 h after dbcAMP treatment. No DNA MeTase mRNA was detectable after 20 h of dbcAMP treatment. Nuclear run-on analysis showed there to be only a small (40%) suppression of DNA MeTase gene transcription in cells treated with dbcAMP for 24 h, implying a role for post-transcriptional processes in the regulation of DNA MeTase mRNA levels. The observed decline in DNA MeTase activity/mRNA levels appeared to precede the dbcAMP-induced arrest in DNA replication, as judged by the incorporation of tritiated thymidine into DNA. In contrast to the effect of dbcAMP, treatment of U937 cells with the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) led to an overall stimulation of DNA MeTase specific activity. The TPA response was found to be complex and broadly consisted of an early (0–15 h) burst of DNA MeTase activity followed by a more gradual sustained increase in DNA MeTase activity after prolonged (16–40 h) TPA treatment. The early phase of high DNA MeTase activity was not mirrored by an increase in steady-state levels of DNA MeTase mRNA, as judged by Northern blot analysis. However, a substantial induction of DNA MeTase mRNA levels was observed after 20–24 h of TPA treatment. Nuclear run-on analysis showed this not to be due to any significant increase in DNA MeTase gene transcription. The observed increases in DNA MeTase activity/mRNA levels were observed whilst cells were undergoing deproliferation. Interestingly, the addition of TPA and more physiological protein kinase C (PKC) activators, such as diacylglycerol and phosphatidylserine, to DNA MeTase-enriched nuclear extracts generated a 4·5-fold and a 1·5-fold increase in DNA MeTase specific activity respectively. The TPA-induced stimulation of DNA MeTase activity could be inhibited by the PKC inhibitor H-9, implicating a role for PKC in the regulation of DNA MeTase activity in vivo.

1988 ◽  
Vol 118 (3) ◽  
pp. 485-489 ◽  
Author(s):  
J.-P. Weniger ◽  
A. Zeis

ABSTRACT The effect of dibutyryl cyclic AMP and FSH on oestrogen biosynthesis was investigated in testes from 18- to 21-day-old fetal rats cultured in vitro in the presence of tritiated testosterone. Oestrone and oestradiol concentrations were measured by determination of constant specific activity after isotopic dilution. Dibutyryl cyclic AMP and FSH markedly stimulated the conversion of testosterone into both oestrone and oestradiol at all stages studied. Oestradiol synthesis was stimulated by two- to sevenfold, while stimulation of oestrone synthesis was even greater. The results demonstrate that the aromatase enzyme system of the fetal rat testis responds to cyclic AMP and FSH. J. Endocr. (1988) 118, 485–489


1991 ◽  
Vol 260 (3) ◽  
pp. G434-G439 ◽  
Author(s):  
V. W. Campbell ◽  
T. Yamada

Stimulation of gastric parietal cells by carbachol induces coordinate expression of the genes for two enzymes involved in the process of acid secretion, H(+)-K(+)-ATPase and carbonic anhydrase II (CA II). The basis of this coordinate expression was examined in experiments using parietal cells that had been pretreated with omeprazole. We observed a twofold increase in the steady-state mRNA levels of both H(+)-K(+)-ATPase and CA II after cells were treated with the inhibitor. The induction of CA II mRNA by carbachol followed the same kinetics in omeprazole-pretreated cells as in those that were not pretreated, suggesting that the induction of CA II gene expression by carbachol was not dependent on activation of the gastric H(+)-K(+)-ATPase. In addition, carbachol stimulation of omeprazole-pretreated cells resulted in an induction of one or more larger mRNA species that hybridized with the H(+)-K(+)-ATPase probe. The observation that carbachol-induced increases in steady-state levels of beta-actin mRNA in parietal cells could be inhibited by omeprazole pretreatment suggests a possible linkage between increased beta-actin gene expression and the process of acid secretion.


2000 ◽  
Vol 278 (3) ◽  
pp. F425-F433 ◽  
Author(s):  
Russell F. Husted ◽  
Rita D. Sigmund ◽  
John B. Stokes

The purpose of these experiments was to investigate the mechanisms whereby transforming growth factor-β (TGF-β) antagonizes the action of adrenocorticoid hormones on Na+ transport by the rat inner medullary collecting duct in primary culture. Steroid hormones 1) increased Na+ transport by three- to fourfold, 2) increased the maximum capacity of the Na+-K+ pump by 30–50%, 3) increased the steady-state levels of the α1-subunit of the Na+-K+-ATPase by ∼30%, and 4) increased the steady-state levels of the α-subunit of the rat epithelial Na+ channel (α-rENaC) by nearly fourfold. TGF-β blocked the effects of steroids on the increase in Na+ transport and the stimulation of the Na+-K+-ATPase and pump capacity. However, there was no effect of TGF-β on the steroid-induced increase in mRNA levels of α-rENaC. The effects of TGF-β were not secondary to the decrease in Na+ transport per se, inasmuch as benzamil inhibited the increase in Na+ transport but did not block the increase in pump capacity or Na+-K+-ATPase mRNA. The results indicate that TGF-β does not inactivate the steroid receptor or its translocation to the nucleus. Rather, they indicate complex pathways involving interruption of the enhancement of pump activity and activation/inactivation of pathways distal to the steroid-induced increase in the transcription of α-rENaC.


2002 ◽  
Vol 10 (2) ◽  
pp. 93-102 ◽  
Author(s):  
L. Elaine Epperson ◽  
Sandra L. Martin

Hibernators in torpor dramatically reduce their metabolic, respiratory, and heart rates and core body temperature. These extreme physiological conditions are frequently and rapidly reversed during the winter hibernation season via endogenous mechanisms. This phenotype must derive from regulated expression of the hibernator’s genome; to identify its molecular components, a cDNA subtraction was used to enrich for seasonally upregulated mRNAs in liver of golden-mantled ground squirrels. The relative steady-state levels for seven mRNAs identified by this screen, plus five others, were measured and analyzed for seasonal and stage-specific differences using kinetic RT-PCR. Four mRNAs show seasonal upregulation in which all five winter stages differ significantly from and are higher than summer (α2-macroglobulin, apolipoprotein A1, cathepsin H, and thyroxine-binding globulin). One of these mRNAs, α2-macroglobulin, varies during the winter stages with significantly lower levels at late torpor. None of the 12 mRNAs increased during torpor. The implications for these newly recognized upregulated mRNAs for hibernation as well as more global issues of maintaining steady-state levels of mRNA during torpor are discussed.


2005 ◽  
Vol 392 (3) ◽  
pp. 675-683 ◽  
Author(s):  
Judit Oláh ◽  
Ferenc Orosz ◽  
László G. Puskás ◽  
László Hackler ◽  
Margit Horányi ◽  
...  

Triosephosphate isomerase (TPI) deficiency is a unique glycolytic enzymopathy coupled with neurodegeneration. Two Hungarian compound heterozygote brothers inherited the same TPI mutations (F240L and E145Stop), but only the younger one suffers from neurodegeneration. In the present study, we determined the kinetic parameters of key glycolytic enzymes including the mutant TPI for rational modelling of erythrocyte glycolysis. We found that a low TPI activity in the mutant cells (lower than predicted from the protein level and specific activity of the purified recombinant enzyme) is coupled with an increase in the activities of glycolytic kinases. The modelling rendered it possible to establish the steady-state flux of the glycolysis and metabolite concentrations, which was not possible experimentally due to the inactivation of the mutant TPI and other enzymes during the pre-steady state. Our results showed that the flux was 2.5-fold higher and the concentration of DHAP (dihydroxyacetone phosphate) and fructose 1,6-bisphosphate increased 40- and 5-fold respectively in the erythrocytes of the patient compared with the control. Although the rapid equilibration of triosephosphates is not achieved, the energy state of the cells is not ‘sick’ due to the activation of key regulatory enzymes. In lymphocytes of the two brothers, the TPI activity was also lower (20%) than that of controls; however, the remaining activity was high enough to maintain the rapid equilibration of triosephosphates; consequently, no accumulation of DHAP occurs, as judged by our experimental and computational data. Interestingly, we found significant differences in the mRNA levels of the brothers for TPI and some other, apparently unrelated, proteins. One of them is the prolyl oligopeptidase, the activity decrease of which has been reported in well-characterized neurodegenerative diseases. We found that the peptidase activity of the affected brother was reduced by 30% compared with that of his neurologically intact brother.


1990 ◽  
Vol 10 (1) ◽  
pp. 391-396
Author(s):  
L Hu ◽  
L J Gudas

Retinoic acid (RA) receptor alpha (RAR alpha) and RAR gamma steady-state mRNA levels remained relatively constant over time after the addition of RA to F9 teratocarcinoma stem cells. In contrast, the steady-state RAR beta mRNA level started to increase within 12 h after the addition of RA and reached a 20-fold-higher level by 48 h. This RA-associated RAR beta mRNA increase was not prevented by protein synthesis inhibitors but was prevented by the addition of cyclic AMP analogs. In the presence of RA, cyclic AMP analogs also greatly reduced the RAR alpha and RAR gamma mRNA levels, even though cyclic AMP analogs alone did not alter these mRNA levels. The addition of either RA or RA plus cyclic AMP analogs did not result in changes in the three RAR mRNA half-lives. These results suggest that agents which elevate the internal cyclic AMP concentration may also affect the cellular response to RA by altering the expression of the RARs.


1983 ◽  
Vol 245 (6) ◽  
pp. E555-E559 ◽  
Author(s):  
D. Szillat ◽  
L. J. Bukowiecki

Adenosine competitively inhibited the stimulatory effects of (-)-isoproterenol on lipolysis and respiration in hamster brown adipocytes. The low value of the apparent ki for respiratory inhibition by adenosine (7 nM) indicated that the nucleoside may control brown adipocyte function under physiological concentrations. Significantly, the dose-response curves for isoproterenol stimulation of lipolysis and respiration were both shifted by adenosine to higher agonist concentrations by the same order of magnitude, providing additional evidence for a tight coupling between lipolysis and respiration. The inhibitory effects of adenosine were rapidly reversed by a) adenosine deaminase, b) agents known to increase intracellular cyclic AMP levels (isoproterenol, isobutylmethylxanthine, dibutyryl cyclic AMP), and c) direct stimulation of respiration with palmitic acid. These results, combined with the fact that adenosine failed to affect respiration evoked either by dibutyryl cyclic AMP or by palmitic acid, strongly indicate that adenosine regulates brown adipose tissue respiration at an early metabolic step of the stimulus-thermogenesis sequence, most probably at the level of the adenylate cyclase complex.


1988 ◽  
Vol 8 (11) ◽  
pp. 4625-4633
Author(s):  
A F Torri ◽  
S L Hajduk

We examined the expression of a nucleus-encoded mitochondrial protein, cytochrome c, during the life cycle of Trypanosoma brucei. The bloodstream forms of T. brucei, the long slender and short stumpy trypanosomes, have inactive mitochondria with no detectable cytochrome-mediated respiration. The insect form of T. brucei, the procyclic trypanosomes, has fully functional mitochondria. Cytochrome c is spectrally undetectable in the bloodstream forms of trypanosomes, but during differentiation to the procyclic form, spectrally detected holo-cytochrome c accumulates rapidly. We have purified T. brucei cytochrome c and raised antibodies that react to both holo- and apo-cytochrome c. In addition, we isolated a partial cDNA to trypanosome cytochrome c. An examination of protein expression and steady-state mRNA levels in T. brucei indicated that bloodstream trypanosomes did not express cytochrome c but maintained significant steady-state levels of cytochrome c mRNA. The results suggest that in T. brucei, cytochrome c is developmentally regulated by a posttranscriptional mechanism which prevents either translation or accumulation of cytochrome c in the bloodstream trypanosomes.


1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


Sign in / Sign up

Export Citation Format

Share Document