scholarly journals Differential expression of endothelin-2 along the mouse intestinal tract

2005 ◽  
Vol 35 (2) ◽  
pp. 201-209 ◽  
Author(s):  
Satoshi Takizawa ◽  
Tsuyoshi Uchide ◽  
Javier Adur ◽  
Takaharu Kozakai ◽  
Eiichi Kotake-Nara ◽  
...  

Endothelin (ET)-2, an ET family peptide, is highly expressed in intestine. However, the specific distribution and function of ET-2 remain unknown. We elucidated the expression profile and localization of ET-2 in mouse gastrointestinal tract. Real-time PCR analysis revealed that ET-2 gene expression in the gastrointestinal tract of healthy animals was relatively high in the colon. Immunohistochemical analysis revealed ET-2-like immunoreactivity mainly in epithelial cells of the mucosa throughout the intestinal tract of healthy animals. Intracellularly, ET-2 was concentrated close to the basement membrane of intestinal epithelial cells. A weak ET-2-like immunoreactivity was also localized to some neurofibers and the myenteric plexus of the muscle layer, coexpressing with vasoactive intestinal peptide. ET-2-like immunoreactivity was also detected at Brunner’s glands of the duodenum and follicle-associated epithelium of Peyer’s patch. In contrast, ET-1-like immunoreactivity was uniformly distributed in epithelial cells. In dextran sulfate sodium (DSS)-induced colitis, colonic ET-2 was upregulated during the late stage of DSS treatment. These results suggest that in intestinal epithelial cells ET-2 could be secreted into the lamina propria and the dome region in Peyer’s patch, and that it might modulate immune cells in these sites for mucosal defense.

2008 ◽  
Vol 180 (12) ◽  
pp. 7840-7846 ◽  
Author(s):  
Kazutaka Terahara ◽  
Masato Yoshida ◽  
Osamu Igarashi ◽  
Tomonori Nochi ◽  
Gemilson Soares Pontes ◽  
...  

2003 ◽  
Vol 285 (5) ◽  
pp. C1294-C1303 ◽  
Author(s):  
Ya-Qin Zhu ◽  
Yu Lu ◽  
Xiao-Di Tan

Intestinal epithelial cells are constantly stimulated by reactive oxidant metabolites (ROMs) in inflamed mucosa. Monochloramine (NH2Cl), a cell-permeant ROM, is particularly relevant to the pathogenesis of inflammation in the gastrointestinal tract. Nuclear speckles, a unique nuclear subcompartment, accumulate a family of proteins, namely, serine- and arginine-rich (SR) proteins. They play important roles in regulation of pre-mRNA splicing. Currently, little is known about the link between inflammatory stimulation and the pre-mRNA splicing process, although gene expression is changed in inflamed tissues. The present study was designed to investigate whether stimulation of human colonic epithelial cells (HT-29 and Caco-2 cell lines) with NH2Cl affects nuclear speckles and their components. By indirect immunofluorescence, nuclear speckles have been shown to undergo rapid aggregation after NH2Cl stimulation. By utilizing Western blotting, SRp30 (a subset of SR proteins) in intestinal epithelial cells was found to be phosphorylated after NH2Cl treatment, whereas other SR proteins were not responsive to NH2Cl stimulation. The cytotoxic effect of NH2Cl was excluded by both negative lactate dehydrogenase assay and propidium iodide staining. Therefore, NH2Cl-induced morphological changes on nuclear speckles and phosphorylated SRp30 do not result from intestinal epithelial injury. Furthermore, the effect of NH2Cl on nuclear speckles and SRp30 was blocked by bisindolylmaleimide I, a selective PKC inhibitor. Together, the available data suggest that stimulation of intestinal epithelial cells with NH2Cl results in a consequent change on pre-mRNA splicing machinery via a distinctive signal pathway involving activation of PKC. This effect may contribute to oxidant-induced pathophysiological changes in the gastrointestinal tract.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Lingling Jiang ◽  
Yingying Shen ◽  
Danfeng Guo ◽  
Diya Yang ◽  
Jiajun Liu ◽  
...  

Abstract How the intestinal tract develops a tolerance to foreign antigens is still largely unknown. Here we report that extracellular vesicles (EVs) with TGF-β1-dependent immunosuppressive activity are produced by intestinal epithelial cells (IECs) under physiological conditions. Transfer of these EVs into inflammatory bowel disease (IBD) mice induced by dextran sulfate sodium salt decreases IBD severity by inducing regulatory T cells and immunosuppressive dendritic cells. In contrast, decreased endogenous EV production promotes IBD development. IECs produce EVs with increased levels of TGF-β1 upon IBD development in an ERK-dependent manner. Furthermore, these EVs tend to localize in the intestinal tract associated with epithelial cell adhesion molecule (EpCAM). Knockdown of EpCAM in vivo increases the severity of murine IBD, and the protective effect of EVs from IECs with decreased EpCAM on murine IBD is blunted. Therefore, our study indicates that EVs from IECs participate in maintaining the intestinal tract immune balance.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 314
Author(s):  
Nisreen Faizo ◽  
Chandrakala Aluganti Narasimhulu ◽  
Anna Forsman ◽  
Shibu Yooseph ◽  
Sampath Parthasarathy

Lipid peroxides (LOOHs) abound in processed food and have been implicated in the pathology of diverse diseases including gut, cardiovascular, and cancer diseases. Recently, RNA Sequencing (RNA-seq) has been widely used to profile gene expression. To characterize gene expression and pathway dysregulation upon exposure to peroxidized linoleic acid, we incubated intestinal epithelial cells (Caco-2) with 100 µM of 13-hydroperoxyoctadecadienoic acid (13-HPODE) or linoleic acid (LA) for 24 h. Total RNA was extracted for library preparation and Illumina HiSeq sequencing. We identified 3094 differentially expressed genes (DEGs) in 13-HPODE-treated cells and 2862 DEGs in LA-treated cells relative to untreated cells. We show that 13-HPODE enhanced lipid metabolic pathways, including steroid hormone biosynthesis, PPAR signaling, and bile secretion, which alter lipid uptake and transport. 13-HPODE and LA treatments promoted detoxification mechanisms including cytochrome-P450. Conversely, both treatments suppressed oxidative phosphorylation. We also show that both treatments may promote absorptive cell differentiation and reduce proliferation by suppressing pathways involved in the cell cycle, DNA synthesis/repair and ribosomes, and enhancing focal adhesion. A qRT-PCR analysis of representative DEGs validated the RNA-seq analysis. This study provides insights into mechanisms by which 13-HPODE alters cellular processes and its possible involvement in mitochondrial dysfunction-related disorders and proposes potential therapeutic strategies to treat LOOH-related pathologies.


Microbiology ◽  
2014 ◽  
Vol 160 (4) ◽  
pp. 671-681 ◽  
Author(s):  
Hanne Jensen ◽  
Stefan Roos ◽  
Hans Jonsson ◽  
Ida Rud ◽  
Stine Grimmer ◽  
...  

Lactobacillus reuteri, a symbiotic inhabitant of the gastrointestinal tract in humans and animals, is marketed as a probiotic. The ability to adhere to intestinal epithelial cells and mucus is an interesting property with regard to probiotic features such as colonization of the gastrointestinal tract and interaction with the host. Here, we present a study performed to elucidate the role of sortase (SrtA), four putative sortase-dependent proteins (SDPs), and one C-terminal membrane-anchored cell surface protein of Lactobacillus reuteri ATCC PTA 6475 in adhesion to Caco-2 cells and mucus in vitro. This included mutagenesis of the genes encoding these proteins and complementation of mutants. A null mutation in hmpref0536_10255 encoding srtA resulted in significantly reduced adhesion to Caco-2 cells and mucus, indicating involvement of SDPs in adhesion. Evaluation of the bacterial adhesion revealed that of the five putative surface protein mutants tested, only a null mutation in the hmpref0536_10633 gene, encoding a putative SDP with an LPxTG motif, resulted in a significant loss of adhesion to both Caco-2 cells and mucus. Complementation with the functional gene on a plasmid restored adhesion to Caco-2 cells. However, complete restoration of adhesion to mucus was not achieved. Overexpression of hmpref0536_10633 in strain ATCC PTA 6475 resulted in an increased adhesion to Caco-2 cells and mucus compared with the WT strain. We conclude from these results that, among the putative surface proteins tested, the protein encoded by hmpref0536_10633 plays a critical role in binding of Lactobacillus reuteri ATCC PTA 6475 to Caco-2 cells and mucus. Based on this, we propose that this LPxTG motif containing protein should be referred to as cell and mucus binding protein A (CmbA).


2018 ◽  
Vol 63 (2) ◽  
pp. 360-367 ◽  
Author(s):  
Gui hua Zhao ◽  
Ye Liu ◽  
Yun tang Cheng ◽  
Qing song Zhao ◽  
Xiao Qiu ◽  
...  

AbstractFelids are the only definitive hosts ofToxoplasma gondii. To lay a foundation for screening theT.gondii-felids interaction factors, we have developed a reproducible primary culture method for cat intestinal epithelial cells (IECs). The primary IECs were isolated from a new born cat’s small intestine jejunum region without food ingress, and respectivelyin vitrocultured by tissue cultivation and combined digestion method with collagenase XI and dispase I, then purified by trypsinization. After identification, the ds cDNA of cat IECs was synthesized for constructing pGADT7 homogenization three-frame plasmid, and transformed into the yeast Y187 for generating the cDNA library. Our results indicated that cultivation of primary cat IECs relays on combined digestion to form polarized and confluent monolayers within 3 days with typical features of normal epithelial cells. The purified cells cultured by digestion method were identified to be nature intestinal epithelial cells using immunohistochemical analysis and were able to maintain viability for at least 15 passages. The homogenizable ds cDNA, which is synthesized from the total RNA extracted from our cultured IECs, distributed among 0.5–2.0 kb, and generated satisfying three-frame cDNA library with the capacity of 1.2 × 106and the titer of 5.2 × 107pfu/mL. Our results established an optimal method for the culturing and passage of cat IECs modelin vitro, and laid a cDNA library foundation for the subsequent interaction factors screening by yeast two-hybrid.


1989 ◽  
Vol 37 (8) ◽  
pp. 1225-1233 ◽  
Author(s):  
A L Hartman ◽  
N M Sawtell ◽  
J L Lessard

A minimum of six very similar but distinct actin isoforms are encoded by the mammalian genome. Developmental regulation of these genes results in a tissue-specific distribution of the isoforms in the adult. Using a panel of actin specific monoclonal antibodies (MAb), we recently reported the expression of two unique actin isoforms in adult rat intestinal brush border. In this report, we examine the developmental expression of these and other actin isoforms in rat intestinal epithelial cells. Isoforms containing the HUC 1-1 and/or C4 epitopes are present by day 15 of gestation and are continuously expressed throughout adult life. Unexpectedly, the gamma-enteric smooth muscle isoactin, defined by the B4 epitope, is transiently expressed in these non-muscle cells late in gestation. The alpha-vascular smooth muscle isoform, however, is not expressed in intestinal epithelial cells during development and, as previously reported, both smooth muscle isoforms are absent in epithelial cells of adult intestine. In addition, we demonstrate that although multiple isoforms are expressed simultaneously in these cells, they are not uniformly distributed at the subcellular level, suggesting that the cell recognizes the actin isoforms as functionally distinct entities.


Sign in / Sign up

Export Citation Format

Share Document