SUPEROVULATION TREATMENT OF ADULT MICE: THEIR SUBSEQUENT NATURAL FERTILITY AND RESPONSE TO FURTHER TREATMENT

1960 ◽  
Vol 21 (2) ◽  
pp. 147-154 ◽  
Author(s):  
R. G. EDWARDS ◽  
RUTH E. FOWLER

SUMMARY The effects of an injection of pregnant mares' serum (PMS), human chorionic gonadotrophin (HCG), or of superovulation treatment with both of these gonadotrophins on subsequent reproductive behaviour of adult mice and on their response to a second superovulation treatment given shortly afterwards have been studied. An injection of PMS had induced ovulation, but not superovulation, in dioestrous mice autopsied 24 hr later. The injection also induced oestrus and superovulation in many mice (c. 30%) 60–62 hr later, a positive correlation being found between mating and ovulation in these mice. The resumption of the natural oestrous cycle after an injection of PMS was delayed in some of the mice. HCG had induced ovulation in mice in metoestrus-II and dioestrus autopsied 24 hr later. Most mice quickly resumed their natural oestrous cycle after the injection of HCG. If mice were not paired with males after the full superovulation treatment with PMS and HCG, they resumed their natural oestrous cycle within 3–6 days. Ovulation, fertilization and pregnancy during or after this natural oestrus were quite normal. These mice were also capable of further induced oestrus and superovulation when given a second course 1–3 days after the first treatment, though the number of mice that ovulated was lower, and the variability between mice in the number of eggs ovulated was higher, if the second treatment was given 1–2 days after the first. The corpora lutea formed in mice that mated after a superovulation treatment were fully active. A second treatment induced superovulation in most mice, but failed to induce oestrus in the majority of them, especially when given during mid-pseudopregnancy. Fertilization and embryonic development were quite normal in the few mice that mated.

1963 ◽  
Vol 26 (3) ◽  
pp. 389-399 ◽  
Author(s):  
R. G. EDWARDS ◽  
E. D. WILSON ◽  
RUTH E. FOWLER

SUMMARY The innate oestrous cycle, the dose of hormone, and the strain of mouse used influence ovulation and implantation in adult mice treated with pregnant mares' serum (PMS) and human chorionic gonadotrophin (HCG). Almost all of the treated mice in some strains will mate, while those from other strains are less responsive. Excess of hormone reduced the mating response and also suppressed ovulation through the formation of atretic corpora lutea and atretic follicles. Provided that the amount of hormone was not excessive, ovulation was induced in almost all mice of all strains irrespective of age, body weight, or stage of the oestrous cycle when treatment began. In one strain more eggs were recovered from females in metoestrus than from those in oestrus or dioestrus at the beginning of treatment, but this effect of the oestrous cycle was only found with low doses of PMS. The proportion of mice with implanted embryos after treatment was influenced by the dose of hormone, strain differences, and the stage of the oestrous cycle when treatment began. This proportion was low after large amounts of PMS and HCG, and generally higher in strains of high natural fertility than in those of low fertility. Fewer of the mice in dioestrus, when injected with PMS, had implanted embryos than had those in oestrus or metoestrus. A strain of mice containing many acyclic females was least successful in implanting embryos. The proportion of embryos that implanted decreased with increasing doses of hormone, apparently because of the increased competition between them for uterine sites.


1989 ◽  
Vol 120 (2) ◽  
pp. 325-330 ◽  
Author(s):  
J. Th. J. Uilenbroek ◽  
P. J. A. Woutersen ◽  
P. D. M. van der Vaart

ABSTRACT Corpora lutea could be identified under the dissection microscope up to 7 days after formation. They were isolated during the oestrous cycle and pseudopregnancy and the progesterone and 20α-OH-progesterone contents were compared with serum values of these steroids. The pattern of progesterone in serum resembled that found in the corpora lutea. However, the pattern of 20α-OH-progesterone concentrations in serum and corpora lutea were different. While 20α-OH-progesterone concentrations in the corpora lutea showed large variations during the cycle, changes in serum concentrations of 20α-OH-progesterone were relatively small. Measurement of hormone concentrations in isolated corpora lutea is therefore a sensitive method for studying corpus luteum activity. To study whether corpora lutea derived after ovulation of immature follicles showed deficient luteal activity, rats at dioestrus (2 days before pro-oestrus) were induced to ovulate by the injection of 10 IU human chorionic gonadotrophin (hCG) and subsequent luteal activity was studied by measuring hormone concentrations in the corpora lutea on day 5 of pseudopregnancy. Concentrations of progesterone, but not of 20α-OH-progesterone, in corpora lutea derived from follicles induced to ovulate at dioestrusday 1 were significantly lower than those in corpora lutea derived from follicles induced to ovulate at prooestrus. This difference was observed not only when pseudopregnancy was induced by cervical stimulation but also when it was induced by implantation of a pituitary gland under the kidney capsule. However, in the latter case, corpora lutea already present on the day of hCG injection also became activated. The present experiments demonstrate that by measuring hormone concentrations in isolated corpora lutea changes in luteal activity can be studied effectively. Moreover, it appears that corpora lutea derived from immature follicles contained less progesterone than those derived from fully mature follicles. Journal of Endocrinology (1989) 120, 325–330


1986 ◽  
Vol 110 (2) ◽  
pp. 279-285 ◽  
Author(s):  
N. Matsuzono ◽  
K. Taya ◽  
G. Watanabe ◽  
S. Sasamoto

ABSTRACT The relationship between a surge of FSH and the initiation of follicular maturation was examined using rats with a 4-day oestrous cycle. When antiserum against LH-releasing hormone (LHRH-AS) was given at 13.00 h on the day of pro-oestrus (day 0), surges of FSH and LH were blocked. Plasma FSH and LH were maintained at low basal levels without a surge release until the next spontaneous surge occurred on the afternoon of day 4, the predicted day of pro-oestrus. Follicular responsiveness to an injection of human chorionic gonadotrophin (hCG) indicated that preovulatory follicles, present at the time of treatment with LHRH-AS, were capable of ovulating on day 1 but had regressed by day 2. Subsequently, as shown by the ovulatory response to hCG, a new set of follicles had begun to mature by the morning of day 3 without a preceding surge of FSH. Changes in oestradiol-17β levels in the plasma throughout the oestrous cycle were the same in rats injected with LHRH-AS or non-immune control serum. The mature follicles in the rats treated with LHRH-AS thus retained the capacity to ovulate after losing their ability to secrete oestrogen. These results suggest that an FSH surge is not essential for initiation of follicular maturation and that basal levels of FSH may be enough to initiate follicular maturation in the absence of newly formed corpora lutea. J. Endocr. (1986) 110, 279–285


1981 ◽  
Vol 91 (2) ◽  
pp. 197-203 ◽  
Author(s):  
M. C. RICHARDSON ◽  
G. M. MASSON

Cell suspensions were prepared from tissue samples of human corpora lutea obtained during the mid- and late-luteal phase of the menstrual cycle. Both oestradiol and progesterone production by dispersed cells were stimulated by similar concentrations of human chorionic gonadotrophin (hCG). As the degree of stimulation of production by hCG was greater for progesterone than for oestradiol (five- to tenfold compared with two- to threefold higher than basal production), the ratio of progesterone to oestradiol produced varied according to the level of trophic stimulation. A comparison of cell suspensions prepared from mid- and late-luteal phase corpora lutea, exposed to the same concentration of hCG (10 i.u./ml) in vitro, did not reveal a shift to oestradiol production in the late-luteal phase. Provision of additional testosterone during incubation raised the level of oestradiol production by dispersed luteal cells. At an optimum concentration of testosterone (1 μmol/l), oestradiol synthesis was not raised further in the presence of hCG or N6, O2-dibutyryl cyclic AMP, suggesting a lack of induction or activation of the aromatase system by gonadotrophin in short-term cultures. Basal and stimulated levels of progesterone production were not significantly impaired in the presence of testosterone.


1982 ◽  
Vol 95 (1) ◽  
pp. 65-70 ◽  
Author(s):  
G. J. S. Tan ◽  
R. Tweedale ◽  
J. S. G. Biggs

The effects of oxytocin on dispersed luteal cells from human corpora lutea of the menstrual cycle were studied. Oxytocin at a concentration of 4 mi.u./ml produced a slight increase in basal progesterone production. However, higher oxytocin concentrations (400 and 800 mi.u./ml) markedly inhibited both basal and human chorionic gonadotrophin-induced progesterone production. These data provide evidence for an effect of oxytocin on the human corpus luteum. In view of the inhibitory action of oxytocin, increased secretion of this hormone may be important in the demise of the corpus luteum at the end of the menstrual cycle.


1995 ◽  
Vol 146 (1) ◽  
pp. 169-176 ◽  
Author(s):  
H Kishi ◽  
K Taya ◽  
G Watanabe ◽  
S Sasamoto

Abstract Plasma and ovarian levels of inhibin were determined by a radioimmunoassay (RIA) at 3-h intervals throughout the 4-day oestrous cycle of hamsters. Plasma concentrations of FSH, LH, progesterone, testosterone and oestradiol-17β were also determined by RIAs. In addition, hamsters were injected at various times with human chorionic gonadotrophin (hCG) to determine the follicular development. The changes in plasma concentrations of FSH after injection of antisera to oestradiol-17β (oestradiol-AS) and inhibin (inhibin-AS) on the morning of day 2 (day 1=day of ovulation) were also determined. Plasma concentrations of inhibin showed a marked increase on the afternoon of day 1, remained at plateau levels until the morning of day 4, then increased abruptly on the afternoon of day 4 when preovulatory LH and FSH surges were initiated. A marked decrease in plasma concentrations of inhibin occurred during the process of ovulation after the preovulatory gonadotrophin surges. An inverse relationship between plasma levels of FSH and inhibin was observed when the secondary surge of FSH was in progress during the periovulatory period. Plasma concentrations of oestradiol-17β showed three increase phases and these changes differed from those of inhibin. Changes in plasma concentrations of oestradiol-17β correlated well with the maturation and regression of large antral follicles. Follicles capable of ovulating following hCG administration were first noted at 2300 h on day 1. The number of follicles capable of ovulating reached a maximum on the morning of day 3 (24·8± 0·6), and decreased by 0500 h on day 4 (15·0 ± 1·1), corresponding to the number of normal spontaneous ovulations. Plasma concentrations of FSH were dramatically increased within 6 h after inhibin-AS, though no increase in FSH levels was observed after oestradiol-AS. These findings suggest that changes in the plasma levels of inhibin during the oestrous cycle provide a precise indicator of follicular recruitment, and that the changes in plasma concentrations of oestradiol-17β are associated with follicular maturation. These findings also suggest that inhibin may play a major role in the inhibition of FSH secretion during the oestrous cycle of the hamster. Journal of Endocrinology (1995) 146, 169–176


1999 ◽  
Vol 163 (2) ◽  
pp. 255-260 ◽  
Author(s):  
L Hinojosa ◽  
R Chavira ◽  
R Dominguez ◽  
P Rosas

The effects of thymulin administration beginning on days 19 or 24 of age on spontaneous puberty and gonadotrophin-induced ovulation were analysed in female normal and hypothymic mice. In normal and hypothymic mice, the daily administration of thymulin at 24 days of age resulted in a delay in the age of vaginal opening, with an increase in serum progesterone levels. Normal mice treated with 200 ng thymulin beginning on day 19 of age and injected with pregnant mare serum gonadotrophin (PMSG) 24 h later had an increase in ovulation rate, number of ova shed and weight of the ovaries. None of the hypothymic mice treated with thymulin on day 19 and PMSG on day 20 ovulated. PMSG treatment on day 25 induced ovulation in hypothymic mice. When these animals were injected previously with 200 ng thymulin, the number of ova shed by ovulating animals was lower than in PMSG-treated animals. Administration of thymulin and sequential injection of PMSG and human chorionic gonadotrophin 54 h later resulted in an increase in ovulatory response in comparison with those receiving only PMSG. The results suggest that thymulin plays a role in the regulation of spontaneous puberty through its effects on adrenal and ovarian endocrine functions. The increase in the ovarian PMSG response-treated animals, previously given thymulin, showed that this thymic hormone participates in the regulation of gonadotrophin secretion mechanisms and seems to be dose- and age-dependent. In hypothymic mice, neuroendocrine mechanisms regulating puberty are different from those of normal mice.


1975 ◽  
Vol 65 (1) ◽  
pp. 73-82 ◽  
Author(s):  
A. K. GOFF ◽  
PATRICIA W. MAJOR

SUMMARY Concentrations of cyclic AMP were measured in rabbit ovaries at various times after injection of an ovulatory dose of human chorionic gonadotrophin (HCG). A biphasic increase in cyclic AMP concentration occurred during the preovulatory period, with peaks 30 min and 3–4 h after HCG injection. Concentrations of cyclic AMP had returned to those observed in ovaries of control oestrous animals before the onset of ovulation 10–12 h after administration of HCG, and remained low throughout the period of pseudopregnancy. Concentrations of cyclic AMP in the newly formed and developing corpora lutea were similar to the concentrations observed in the remainder of the tissue during this period. No significant increase in cyclic AMP concentration was observed 7–9 days after initiation of ovulation. Concentrations of ATP were also investigated during the preovulatory period. The dose– response relationship of HCG to cyclic AMP production in oestrous rabbit ovaries was investigated.


1985 ◽  
Vol 106 (1) ◽  
pp. 31-NP ◽  
Author(s):  
G. Watanabe ◽  
K. Taya ◽  
S. Sasamoto

ABSTRACT The present study was undertaken to determine whether hypothalamic differentiation is involved in the selective release of FSH during the periovulatory period using adult male rats castrated and implanted with an ovary. Adult male rats (70–90 days old) were castrated and an ovary obtained from a prepubertal female rat (26 days old) was immediately grafted subcutaneously. Four weeks later, human chorionic gonadotrophin (hCG, 10 i.u.) was injected i.v. into the experimentally manipulated rats to induce ovulatory changes in the grafted ovaries. Another group of similarly prepared rats was injected with 0·9% (w/v) NaCl solution as controls. After injection of hCG, plasma concentrations of FSH increased significantly by 6 h, reached peak values at 12 h and declined to control levels at 36 h. On the other hand, plasma concentrations of LH were reduced by 6 h and decreased further during the next 36 h. An abrupt fall in plasma concentrations of oestradiol-17β occurred within 3 h of the administration of hCG. Histological examination revealed that ovulatory changes and luteinization of follicles were induced in grafted ovaries by 18 h after the injection of hCG. Thirty-six hours after treatment with hCG, a set of newly formed corpora lutea was observed in grafted ovaries and plasma concentrations of progesterone were raised. Treatment with oestradiol-17β did not inhibit the selective release of FSH after the administration of hCG, suggesting that the abrupt decrease in secretion of oestradiol-17β from the grafted ovary is not involved in the occurrence of the FSH surge. These results indicate that a selective release of FSH can be induced in castrated male rats bearing an ovarian transplant probably due to decreased secretion of inhibin by the luteinized follicles in the grafted ovaries. Sex differentiation of the hypothalamus is not, therefore, involved in the selective surge of FSH. J. Endocr. (1985) 106, 31–36


Sign in / Sign up

Export Citation Format

Share Document