Effect of parathyroid hormone and calcitonin on the cytoplasmic spreading of isolated osteoclasts

1984 ◽  
Vol 102 (3) ◽  
pp. 281-286 ◽  
Author(s):  
T. J. Chambers ◽  
N. A. Athanasou ◽  
K. Fuller

ABSTRACT Osteoclasts, the major agents of bone resorption, were isolated from neonatal rat bone, and the cytoplasmic spreading of these cells was measured after incubation in the presence or absence of hormones or other cell types. Salmon calcitonin, which inhibits osteoclastic bone resorption, reduced spreading in a dose-dependent manner and caused significant inhibition at concentrations as low as 6·7 pg/ml. Parathyroid hormone (PTH) had no effect on the spreading of isolated osteoclasts but if osteoblasts and osteoclasts were co-cultured the addition of PTH caused a marked increase in spreading at concentrations of 0·025 i.u./ml and above. The results suggest that while calcitonin is a direct inhibitor of osteoclastic activity, PTH may stimulate osteoclasts through a primary action on osteoblasts. J. Endocr. (1984) 102, 281–286

1987 ◽  
Vol 252 (1) ◽  
pp. E44-E48
Author(s):  
N. S. Krieger ◽  
P. H. Stern

The effects of forskolin, which directly activates adenylate cyclase in most systems, have been compared with the actions of parathyroid hormone and calcitonin, both of which have been suggested to utilize cAMP as a second messenger in their actions on bone. Forskolin alone stimulated calcium release from neonatal mouse calvaria and fetal rat limb bones in vitro in a dose-dependent manner. The effect was maximal at 10(-6) M in both systems. At higher concentrations forskolin completely inhibited stimulated bone resorption, although with submaximal concentrations the inhibition was only partially sustained up to 72 h. Forskolin directly stimulated cAMP release from calvaria into the medium at concentrations up to 10(-4) M. Forskolin had no effect on the interaction between parathyroid hormone and calcitonin, while calcitonin inhibited the stimulatory effect of forskolin comparably with its inhibition of parathyroid hormone-stimulated bone resorption. The results indicate that forskolin has dual effects on bone and can mimic responses of both parathyroid hormone and calcitonin in both bone culture systems. The observed response depends on the concentration of forskolin used and the length of treatment with the drug.


1991 ◽  
Vol 277 (3) ◽  
pp. 863-868 ◽  
Author(s):  
D Sömjen ◽  
K D Schlüter ◽  
E Wingender ◽  
H Mayer ◽  
A M Kaye

We have found, in previous studies in vitro using skeletal derived cell cultures, that mid-region fragments of human parathyroid hormone (hPTH) stimulate [3H]thymidine incorporation into DNA and increase the specific activity of the brain-type isoenzyme of creatine kinase (CK). These changes occurred without an increase in cyclic AMP formation which is linked to bone resorption. In this study, we found that the mid-region fragment hPTH-(28-48) stimulated CK activity in diaphysis, epiphysis and kidney in a time- and dose-dependent manner, parallel to the effects of the whole molecule bovine (b)PTH-(1-84) and the fully active fragment hPTH-(1-34). The increase caused by hPTH-(28-48) at a dose of 1.25 micrograms/rat was not less than the 2-fold increase caused by a roughly equimolar concentration bPTH-(1-84). A significant increase was reached at 1 h after intraperitoneal injection in all cases. All three sequences of PTH caused an increase in [3H]thymidine incorporation into DNA in diaphysis and epiphysis, but not in kidney, 24 h after injection. A fragment further towards the C-terminal, hPTH-(34-47), was inactive compared with an equimolar concentration of the fragment hPTH-(25-39), which stimulated both CK activity and DNA synthesis. These results in vivo are in line with previous findings in vitro; they provide further support for the suggestion that mid-region fragments of the PTH molecule could be used to induce bone formation without incurring the deleterious effect of bone resorption.


1982 ◽  
Vol 243 (6) ◽  
pp. E499-E504
Author(s):  
N. S. Krieger ◽  
P. H. Stern

The cardiotonic agent amrinone has been postulated to directly affect Na-Ca exchange. Because stimulated bone resorption has been proposed to require Na-Ca exchange, we examined the effects of amrinone on bone. Amrinone inhibited release of Ca from neonatal mouse calvaria in organ culture stimulated by parathyroid hormone (PTH), 1,25-dihydroxyvitamin d3, or prostaglandin E2. Inhibition was dose dependent and maximal at 2 X 10(-4) M. The effect of amrinone differed from the inhibitory effects of calcitonin, ouabain, or nigericin in that 1) 6-h exposure to amrinone alone prevented the effect of subsequently added PTH; 2) amrinone was only partially effective if added after resorption was initiated by 24-h treatment with PTH; 3) coincubation with amrinone and PTH during the first 48 h of culture allowed for a response to PTH after amrinone was removed; no such protection by a stimulator occurred with ouabain or nigericin. Also submaximal concentrations of amrinone plus calcitonin, ouabain, or nigericin gave greater than additive inhibition of Ca release. Amrinone had no effect on basal bone cAMP or on the acute stimulation of cAMP by PTH. The results suggest that amrinone could have a more direct interaction with the pathway involved in stimulated bone resorption than the other inhibitors.


2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


2016 ◽  
Vol 19 (1) ◽  
pp. 15-24
Author(s):  
Muhammad Shoaib Akhtar ◽  
Zulfiqar Khan ◽  
Muhammad Naveed Mushtaq ◽  
Muhammad Salman Akhtar

The current study was planned to evaluate comparative anti-inflammatory, analgesic and anti-pyretic activities of two newly synthesized organo-antimony (v) ferrocenyl benzoate derivatives with piroxicam. Anti-microbial activity of these compounds was also screened against two microorganisms. Analgesic effect of test compounds was evaluated by formalin-induced paw licking test in mice. The test compounds at 50 and 100 mg/kg b.w. doses exhibited significant (p<0.001) reduction of paw licking in treated mice comparable with standard drug piroxicam. Anti-inflammatory activity was assessed against carrageenan-induced paw oedema. The compound A produced anti-inflammatory effects comparable with standard piroxicam in dose dependent manner whereas compound B showed better effects than piroxicam at dose of 100 mg/kg body weight. To investigate anti-pyretic activity, fever was induced by administration of Brewer’s yeast in mice. Compound A showed highly significant inhibition of pyrexia (p<0.001) comparable to piroxicam after 3 hours while compound B (50 and 100 mg/kg) produced relatively lower anti-pyretic effect than standard drug. Antibacterial activity determined by disc diffusion method showed that compound B was relatively more effective than compound A against Staphylococcus aureus and Klebsiella pneumoniae. It is conceivable that both the tested compounds possessed anti-inflammatory, analgesic, anti-pyretic and anti-microbial effects even after the structural modification of parent compound.Bangladesh Pharmaceutical Journal 19(1): 15-24, 2016


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Li-Hua Mu ◽  
Li-Hua Wang ◽  
Teng-Fei Yu ◽  
Yu-Ning Wang ◽  
Hong Yan ◽  
...  

Triple-negative breast cancers (TNBCs) are associated with poor patient survival because of the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expressions. Our previous studies have shown that the triterpenoid saponin AG8 from Ardisia gigantifolia stapf. inhibits the proliferation of MDA-MB-231 cells. In this study, the effects of AG8 were further analyzed in different TNBC cell types: MDA-MB-231, BT-549, and MDA-MB-157 cells. AG8 inhibited the viability of MDA-MB-231, BT-549, and MDA-MB-157 cells in a dose-dependent manner and showed stronger cytotoxicity to African American (AA) and mesenchymal (M) subtypes than Caucasian (CA) and mesenchymal stem-like (MSL) subtypes, respectively. AG8 impaired the uptake of MitoTracker Red CMXRos by the mitochondria of TNBC cells in a dose-dependent manner, and this was recovered by N-acetyl-l-cysteine (NAC). AG8 affected GSH, SOD, and MDA levels of TNBC cells, but different TNBC subtypes had different sensitivities to AG8 and NAC. In addition, we found that AG8 increased the Bax/Bcl-2 ratio and the levels of cytoplasmic cytochrome c and significantly decreased phosphorylation of ERK and AKT in BT549 and MDA-MB-157 cells. AG8 elicited its anticancer effects through ROS generation, ERK and AKT activation, and by triggering mitochondrial apoptotic pathways in TNBC cells. AG8 had selective cytotoxic effects against the AA and M TNBC subtypes and markedly induced MDA-MB-157 (AA subtype) cell apoptosis through pathways that were not associated with ROS, which was different from the other two subtypes. The underlying mechanisms should be further investigated.


1989 ◽  
Vol 258 (3) ◽  
pp. 889-894 ◽  
Author(s):  
T Mine ◽  
I Kojima ◽  
E Ogata

The synthetic 1-34 fragment of human parathyroid hormone (1-34hPTH) stimulated glucose production in isolated rat hepatocytes. The effect of 1-34hPTH was dose-dependent and 10(10) M-1-34 hPTH elicited the maximum glucose output, which was approx. 80% of that by glucagon. Although 1-34hPTH induced a small increase in cyclic AMP production at concentrations higher than 10(-9) M, 10(-10) M-1-34hPTH induced the maximum glucose output without significant elevation of cyclic AMP. This is in contrast to the action of forskolin, which increased glucose output to the same extent as 10(-10) M-1-34hPTH by causing a 2-fold elevation of cyclic AMP. In addition to increasing cyclic AMP, 1-34hPTH caused an increase in cytoplasmic free calcium concentration ([Ca2+]c). When the effect of 1-34hPTH on [Ca2+]c was studied in aequorin-loaded cells, low concentrations of 1-34hPTH increased [Ca2+]c: the 1-34hPTH effect on [Ca2+]c was detected at as low as 10(-12) M and increased in a dose-dependent manner. 1-34hPTH increased [Ca2+]c even in the presence of 1 microM extracellular calcium, suggesting that PTH mobilizes calcium from an intracellular pool. In line with these observations, 1-34hPTH increased the production of inositol trisphosphate. These results suggest that: (1) PTH activates both cyclic AMP and calcium messenger systems and (2) PTH stimulates glycogenolysis mainly via the calcium messenger system.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3169-3169
Author(s):  
Hugh Kikuchi ◽  
Amofa Eunice ◽  
Maeve McEnery ◽  
Farzin Farzaneh ◽  
Stephen A Schey ◽  
...  

Abstract Despite of newly developed and more efficacious therapies, multiple myeloma (MM) remains incurable as most patient will eventually relapse and become refractory. The bone marrow (BM) microenvironment provides niches that are advantageous for drug resistance. Effective therapies against MM should ideally target the various protective BM niches that promote MM cell survival and relapse. In addition to stromal mesenchymal/myofibroblastic cells, osteoclasts play a key supportive role in MM cell viability. Additionally, 80% of patients develop osteolytic lesions, which is a major cause of morbidity. Increased osteoclast activity is characteristic in these patients and targeting osteoclast function is desirable to improve therapies against MM. Osteoclasts need to form an F-actin containing ring along the cell margin that defines a resorbing compartment where protons and degradative enzymes are secreted for dissolution of bone mineral. Remodelling of F-actin and vesicle secretion are regulated by the class IA PI3K pathway during osteoclastic bone resorption. Additionally, it has recently been shown that inhibition of the class IA PI3K pathway in MM cells with GDC0941 induces apoptosis-mediated killing. We hypothesised that GDC0941 could be used as a therapeutic agent to overcome MM-induced osteoclast activation. GDC0941 inhibited maturation of osteoclasts derived from BM aspirates from MM patients in a dose dependent manner. This correlated with decreased bone resorption of osteoclasts cultured on dentine discs. Exposure of mature osteoclasts to GC0941 resulted in abnormal organisation of larger F-actin rings, suggesting a negative effect on the dynamics of the actin cytoskeleton required for bone resorption. We also found that GDC-0941 can prevent protection of the MM cell lines MM1.S and MM1.R by osteoclasts against killing. GDC-0941 alone blocked MM cell proliferation independently of the presence of BM stromal cells and synergised with other therapeutic agents including Lenalidomide, Pomalidomide, Bortezomid and Dexamethasone. We also found that in the presence of MM cells, Dexamethasone (a drug commonly used alone or in combination with new drugs against MM) induced the proliferation of BM stromal cells and adhesion of MM cells on this protective stroma in a dose dependent manner. Dexamethasone is highly effective at MM cell killing when cells are cultured alone. However, we found that at low doses (below 1 uM) and in the presence of BM stromal cells, Dexamethasone could induce MM cell proliferation. GDC0941 enhanced Dexamethasone killing even in the presence of BM stromal cells by blocking Dexamethasone-induced stromal cell proliferation and adhesion of MM cells on the stroma. Targeting individual the PI3K Class IA isoforms alpha, beta, delta or gamma proved to be a less efficient strategy to enhance Dexamethasone killing. Previous work has shown that efficacy of targeting individual PI3K Class I A isoforms would be low for activation of caspases in MM cells as it would be dependent on relative amounts of isoforms expressed by the MM patient. GDC-0941 also inhibited the proliferation of MM1.R and RPMI8266 MM cell lines, which are less sensitive to treatment to Dexamethasone. Co-culture of MM cells with BM stromal cells induced the secretion of IL-10, IL-6, IL-8, MCP-1 and MIP1-alpha. The dose-dependant increased proliferation of Dexamethasone-treated MM cells in the presence of the BM stroma correlated with the pattern of secretion of IL-10 (a cytokine that can induce B-cell proliferation) and this was blocked by the combination of Dexamethasone with GDC0941. GDC-0941 alone or in combination with Dexamethasone was more efficacious at inducing MM cell apoptosis in the presence of the BM stroma cells vs treatment of MM cells alone. These are very encouraging results as they suggest that GDC-0941 in combination with Dexamethasone would be potentially highly efficacious for targeting MM cells in the BM microenvironment. We are currently performing in vivo data using C57BL/KaLwRij mice injected with 5T33-eGFP MM cells that will be discussed at the meeting. We propose that MM patients with active bony disease may benefit from treatment with GDC0941 alone or in combination with currently used therapeutic drugs against MM. Disclosures: No relevant conflicts of interest to declare.


1986 ◽  
Vol 164 (1) ◽  
pp. 104-112 ◽  
Author(s):  
B M Thomson ◽  
J Saklatvala ◽  
T J Chambers

A monocyte-derived factor with IL-1-like properties has recently been shown to cause resorption of bone in organ culture. We have investigated the action of IL-1 on disaggregated populations of osteoclasts, incubated alone or in the presence of osteoblastic cells, in an attempt to identify the target cell for IL-1 in bone, and to elucidate the mechanism by which IL-1 induces osteoclastic resorption. Osteoclasts were disaggregated from neonatal rat long bones and incubated on slices of human femoral cortical bone. Under these conditions, the majority of osteoclasts form distinctive excavations in the bone surface within 24 h, the volume of which can be quantified by computer-assisted morphometric and stereophotogrammetic techniques. IL-1 had no effect on bone resorption by osteoclasts alone, but when incubated in the presence of calvarial cells or cloned osteosarcoma cells, it induced a 3.8 (+/- 0.38)-fold increase in osteoclastic bone resorption, with significant enhancement at concentrations of greater than or equal to 30 pg/ml. The osteoblastic populations themselves did not resorb bone. The mechanism by which osteoblastic cells stimulate osteoclasts did not appear to depend upon PG synthesis; nor could we detect a diffusible substance in the medium of stimulated cocultures. These results indicate that IL-1 stimulates bone resorption through a primary action on osteoblasts, which are induced by IL-1 to transmit a short-range signal that stimulates osteoclastic bone resorption.


1989 ◽  
Vol 143 (1) ◽  
pp. 165-175
Author(s):  
F. P. Lafeber ◽  
M. P. Herrmann-Erlee ◽  
G. Flik ◽  
S. E. Wendelaar Bonga

Hypocalcin, the major hormone with hypocalcaemic action in fish, was isolated from trout corpuscles of Stannius (SCs). The bioactivity of hypocalcin was assessed in a parathyroid hormone (PTH) bioassay involving bone resorption in embryonic mouse calvaria. Calcium and phosphate release and lactate production were stimulated in a dose-dependent manner by hypocalcin. On a molar basis about equal amounts of hypocalcin and PTH were required to obtain similar effects in this assay. Hypocalcin did not stimulate cyclic AMP production either in mouse calvaria or in cultured osteoblasts. In this respect hypocalcin resembles shortened or N-terminus-modified PTH molecules that induce bone resorption without increasing cyclic AMP levels. Since hypocalcin and PTH have comparable bioactivity in this mammalian bioassay (as well as in fish bioassays), we tentatively suggest that both hormones are structurally similar and that both hormones may act via the same receptors. The two hormones show no resemblance to one another in primary structure, so we suggest that they have similarities in tertiary structure.


Sign in / Sign up

Export Citation Format

Share Document