Induced luteal regression in the primate: evidence for apoptosis and changes in c-myc protein

1995 ◽  
Vol 147 (1) ◽  
pp. 131-137 ◽  
Author(s):  
H M Fraser ◽  
S F Lunn ◽  
G M Cowen ◽  
P J Illingworth

Abstract There is increasing molecular evidence that apoptosis is involved in the process of structural luteal regression in non-primate species. Apoptosis is dependent upon the activation of certain proto-oncogenes and c-myc protein has an important regulatory role in this process in some cell types. The aim of the present study was to determine the occurrence and localisation of c-myc protein within the primate corpus luteum, determine changes during induction of luteal regression and examine the corpora lutea for morphological evidence of apoptosis. Ovaries were studied from marmoset monkeys in the late follicular, and in the early, mid and late luteal phases. Luteal regression was induced either by treatment with prostaglandin F2α analogue or GnRH antagonist administered during the mid luteal phase and ovaries obtained 24 and 48 h later. Immunocytochemistry was performed using a monoclonal antibody to the c-myc protein. In pre-ovulatory follicles positive staining was found in the nucleus of a few granulosal cells and in the cytoplasm of thecal cells. c-myc was present in all corpora lutea where it was localised predominantly in the cytoplasm. In early corpora lutea, scattered cells with intense staining were observed in the presence of a majority of moderately or weakly stained cells. In the mid and late luteal phases, corpora lutea were uniformly moderately stained for c-myc. Following induction of luteal regression, nuclear degeneration with condensation and fragmentation indicative of apoptosis was observed. In other luteal cells, increased cytoplasmic volume and dissolution of cellular and nuclear membranes suggested necrosis. After luteal regression the overall intensity of staining for c-myc declined, but was present at high signal concentration in the cytoplasm of those cells whose morphological integrity was best maintained following treatment. In a minority of steroidogenic luteal cells, both nuclear and cytoplasmic staining was observed. These results suggest that after ovulation there appears to be a marked increase in c-myc production in the cytoplasm of the luteal cells of the developing corpus luteum and that c-myc is present throughout the luteal phase. During induced luteal regression c-myc may undergo a transitory rise and transfer to the nucleus and both apoptosis and necrosis occur during the process of luteolysis. Journal of Endocrinology (1995) 147, 131–137

1997 ◽  
Vol 45 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Firyal S. Khan-Dawood ◽  
Jun Yang ◽  
M. Yusoff Dawood

We have recently shown the presence of E-cadherin and of α- and γ-catenins in human and baboon corpora lutea. These are components of adherens junctions between cells. The cytoplasmic catenins link the cell membrane-associated cadherins to the actin-based cytoskeleton. This interaction is necessary for the functional activity of the E-cad-herins. Our aim therefore was to determine the presence of α-actin in the baboon corpus luteum, to further establish whether the necessary components for E-cadherin activity are present in this tissue. An antibody specific for the smooth muscle isoform of actin, α-actin, was used for these studies. The results using immunohistochemistry show that (a) α-actin is present in steroidogenic cells of the active corpus luteum, theca externa of the corpus luteum, cells of the vasculature, and the tunica albuginea surrounding the ovary. The intensity of immunoreactivity for α-actin varied, with the cells of the vasculature reacting more intensely than the luteal cells. A difference in intensity of immunoreactivity was also observed among the luteal cells, with the inner granulosa cells showing stronger immunoreactivity than the peripheral theca lutein cells. There was no detectable immunoreactivity in the steroidogenic cells of the atretic corpus luteum. However, in both the active and atretic corpora lutea, α-actin-positive vascular cells were dispersed within the tissue. (b) Total α-actin (luteal and non-luteal), as determined by Western blot analyses, does not change during the luteal phase and subsequent corpus luteum demise (atretic corpora lutea). (c) hCG stimulated the expression of α-actin and progesterone secretion by the early luteal phase (LH surge + 1–5 days) and midluteal phase (LH surge + 6–10 days) cells in culture, but only progesterone in the late luteal phase (LH surge + 11–15 days). The data show that α-actin is present in luteal cells and that its expression is regulated by hCG, thus suggesting that E-cadherin may form functional adherens junctions in the corpus luteum.


Reproduction ◽  
2002 ◽  
pp. 67-77 ◽  
Author(s):  
MO Al-Zi'abi ◽  
HM Fraser ◽  
ED Watson

In mares, little information is available on the type of cell death that occurs during natural and induced luteal regression. Corpora lutea were collected from mares in the early luteal phase, days 3-4 (n = 4); mid-luteal phase, day 10 (n = 5); early regression, day 14 (n = 4); late regression, day 17 (n = 4); and 12 and 36 h (n = 3 per group) after PGF2alpha administration on day 10. Histological and ultrastructural sections were examined and TUNEL was used to detect DNA fragmentation. In early luteal regression, there were more pyknotic luteal cells and extracellular round dense bodies compared with the mid-luteal phase. By late regression, there was a significant decline (P < 0.01) in the number of round dense body clusters and a marked accumulation of lipid. Twelve and 36 h after PGF2alpha administration, changes were similar to those seen in natural regression, but there was also a marked infiltration of neutrophils. Accumulation of lipid was not apparent until 36 h after PGF2alpha administration. Ultrastructural examination revealed rarefaction and distortion of the mitochondrial cristae in most of the luteal cells by the mid-luteal phase. Luteal cells showed shrinkage, accumulation of lipid with foamy appearance, and disruption in both smooth endoplasmic reticulum and mitochondria during natural and induced regression. Some luteal cells showed fragmented or pyknotic chromatin characteristic of apoptosis. Other luteal cells showed crenation of the nuclear membrane and shrinkage of the nucleus, features not characteristic of apoptotic cell death. In late regression, capillaries were obstructed by swollen endothelial cells and round dense bodies. These results show that structural regression may be initiated as early as the mid-luteal phase, and is clearly visible by day 14 in natural regression and 12 h after induced regression. Apoptosis did appear to be involved in luteolysis in the equine corpus luteum, but non-apoptotic changes were also observed in some luteal cells during regression. Accumulation of lipid was a late feature of luteal regression.


1985 ◽  
Vol 104 (1) ◽  
pp. 149-151 ◽  
Author(s):  
M. C. Richardson ◽  
G. M. Masson

ABSTRACT Suspensions of luteal cells were prepared from samples of human corpora lutea obtained during the luteal phase of menstrual cycles. Addition of oxytocin (1 μmol/l) to the various cell preparations had no effect on either basal production of progesterone or on steroidogenic responses to a range of concentrations of gonadotrophin. J. Endocr. (1985) 104, 149–151


1995 ◽  
Vol 144 (2) ◽  
pp. 201-208 ◽  
Author(s):  
H M Fraser ◽  
S F Lunn ◽  
P F Whitelaw ◽  
S G Hillier

Abstract During the luteal phase of the primate ovulatory cycle the predominant inhibin/activin subunit mRNAs produced by the corpus luteum and antral follicles are those for the α- and βB-subunits respectively. The control of expression of these mRNAs and the resultant nature of the endocrine and paracrine signals which they may potentially generate has yet to be elucidated. Inhibin/activin subunit mRNAs may have a role in both the paracrine regulation of follicular and luteal function and modulation of FSH secretion. The aim of this study was to investigate the expression of inhibin/activin subunit mRNAs following luteal regression induced by either withdrawal of LH support (GnRH antagonist treatment), or by a direct inhibitory action (prostaglandin administration). Marmoset monkeys with regular ovulatory cycles were treated on day 8 and 9 of the luteal phase with either GnRH antagonist, prostaglandin or vehicle (n=3 per group). Ovaries were studied 48 h after onset of treatment (on day 10 of the luteal phase) by hybridizing frozen tissue sections with radiolabelled riboprobes specific to the inhibin/activin α-, βA- and βB-subunit mRNAs. After autoradiographic exposure, grain concentrations were quantified by image analysis. In corpora lutea from control marmosets there was high expression of α-mRNA with only marginal expression of βB-mRNA. Corpora lutea in animals treated with GnRH antagonist or prostaglandin had markedly reduced expression of α-mRNA while βB-mRNA was unchanged. In controls, all healthy antral follicles exhibited a high level of expression of βB-mRNA in the granulosa cells and low expression of α-mRNA in theca cells. This was unaffected by either treatment. βA-mRNA was found at a low level in granulosa cells but was not evident at a significant level in the corpora lutea of any of the groups. These results demonstrate (1) the marmoset corpus luteum is a source of high expression of α-subunit mRNA, (2) this α-mRNA is dependent upon LH support, (3) the process of luteal regression takes place without alteration of βB-mRNA. Antral follicle α- and βB-mRNAs are independent of the process of luteal regression or gonadotrophic withdrawal during the period of the luteal-follicular phase transition. Journal of Endocrinology (1995) 144, 201–208


1968 ◽  
Vol 59 (2_Suppl) ◽  
pp. S35-S51 ◽  
Author(s):  
B. L. Lobel ◽  
E. Levy

ABSTRACT Activities of various hydrolases and dehydrogenases were studied during the formation, development and involution of cyclic corpora lutea and in the corpora lutea of early pregnancy. At 24 hours postovulation the luteal cells, whether of granulosal or thecal origin, contained demonstrable levels of Δ5-3β-hydroxysteroid dehydrogenase and the NADP and NADPH2 diaphorases. During the period of proliferation and cellular growth, enzymic activities in the luteal cells were moderate at first, and then increased. In the mature corpus luteum, activities of the dehydrogenases occurred in all luteal cells but were most intense in the large polymorphic luteal cells. Activities of hydrolytic enzymes, low in the immediate postovulatory period, increased with the development of the vascular system. Enzymic characteristics of corpora lutea of gestation were similar to those of cyclic corpora, except for phosphorylase activity which was observed in luteal cells in gestational corpora, but confined to the vascular walls in cyclic corpora. No increase in activities of 17β- and 20β-hydroxysteroid dehydrogenases (above those seen in pre-ovulatory follicles) were observed after incubation of sections of either mature cyclic or gestational corpora. Involution of cyclic corpora lutea began with degenerative changes in the blood vessels: pyknosis of the endothelial cell nuclei and a sudden decline in activities of hydrolytic enzymes in the vascular walls. Subsequently, the luteal cells showed a sharp decrease in activities of the dehydrogenases as well as other signs of regressive change. The cytochemical findings are discussed in relation to biochemical observations on steroid synthesis by the bovine corpus luteum.


1986 ◽  
Vol 113 (4) ◽  
pp. 570-575 ◽  
Author(s):  
Firyal S. Khan-Dawood

Abstract. Immunoreactive oxytocin is detectable in the corpora lutea of women and cynomolgus monkeys by radioimmunoassay. To localize the presence of oxytocin and neurophysin I in ovarian tissues of subhuman primates, three corpora lutea and ovarian stromal tissues and two Fallopian tubes obtained during the menstrual cycle of the baboon and decidua from two pregnant baboons were examined using highly specific antisera against either oxytocin or neurophysin I and preoxidase-antiperoxidase light microscopy immunohistochemistry. Oxytocin-like as well as neurophysin I-like immunoreactivities were found in some cells of all the corpora lutea only, but could not be demonstrated in ovarian stromal tissues, Fallopian tubes and decidua. Specificity of the immunocytochemical reaction was further confirmed by immunoabsorption of the antiserum with excess oxytocin or neurophysin, after which the immunoreactivities for both oxytocin and neurophysin in the luteal tissue were negative. Similar controls using normal rabbit serum gave no positive staining for either oxytocin or neurophysin. Counterstaining of the positive immunoreactivities for oxytocin and neurophysin I with Mayer's haematoxylin and eosin demonstrated clearly that the oxytocin and neurophysin I appeared as granular material mainly within the cytoplasm of the luteal cells. The localization of immunoreactive oxytocin and neurophysin I in the corpus luteum of the baboon demonstrates directly the presence of these two neurohypophysial peptides within primate luteal cells and suggests their local production.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zonghao Tang ◽  
Jiajie Chen ◽  
Zhenghong Zhang ◽  
Jingjing Bi ◽  
Renfeng Xu ◽  
...  

The increase of oxidative stress is one of the important characteristics of mammalian luteal regression. Previous investigations have revealed the essential role of reactive oxygen species (ROS) in luteal cell death during luteolysis, while it is unknown how ROS is regulated in this process. Considering the decrease of blood flow and increase of PGF2α during luteolysis, we hypothesized that the HIF-1α pathway may be involved in the regulation of ROS in the luteal cell of the late corpus luteum (CL). Here, by using a pseudopregnant rat model, we showed that the level of both HIF-1α and its downstream BNIP3 was increased during luteal regression. Consistently, we observed the increase of autophagy level during luteolysis, which is regulated in a Beclin1-independent manner. Comparing with early (Day 7 of pseudopregnancy) and middle CL (Day 14), the level of ROS was significantly increased in late CL, indicating the contribution of oxidative stress in luteolysis. Inhibition of HIF-1α by echinomycin (Ech), a potent HIF-1α inhibitor, ameliorated the upregulation of BNIP3 and NIX, as well as the induction of autophagy and the accumulation of ROS in luteal cells on Day 21 of pseudopregnancy. Morphologically, Ech treatment delayed the atrophy of the luteal structure at the late-luteal stage. An in vitro study indicated that inhibition of HIF-1α can also attenuate PGF2α-induced ROS and luteal cell apoptosis. Furthermore, the decrease of cell apoptosis can also be observed by ROS inhibition under PGF2α treatment. Taken together, our results indicated that HIF-1α signaling is involved in the regression of CL by modulating ROS production via orchestrating autophagy. Inhibition of HIF-1α could obviously hamper the apoptosis of luteal cells and the process of luteal regression.


Reproduction ◽  
2001 ◽  
pp. 587-594 ◽  
Author(s):  
T Tsubota ◽  
S Taki ◽  
K Nakayama ◽  
JI Mason ◽  
S Kominami ◽  
...  

The Japanese black bear, Ursus thibetanus japonicus, is a seasonal breeder and shows delayed implantation for several months during pregnancy. The objective of this study was to clarify the steroidogenic capability of the corpus luteum and placenta during pregnancy, including both delayed implantation and fetal development, by immunolocalization of steroidogenic enzymes in these organs of the Japanese black bear. Ovaries and placentae from 15 wild Japanese black bears, which had been killed legally by hunters and were thought to be pregnant, were used in an immunocytochemical study to localize the cholesterol side chain cleavage cytochrome P450 (P450scc), 3beta-hydroxysteroid dehydrogenase (3betaHSD), 17alpha-hydroxylase cytochrome P450 (P450c17) and aromatase cytochrome P450 (P450arom) by the avidin-biotin-peroxidase complex method using polyclonal antisera raised in mammals against P450scc, 3betaHSD, P450c17 and P450arom. P450scc and 3betaHSD were localized in all luteal cells throughout pregnancy. P450c17 was present in a few luteal cells, especially in the outer area of the corpus luteum throughout pregnancy, but the number of positively immunostained cells decreased during the post-implantation period. Cells positively immunostained for P450c17 were significantly smaller than negatively immunostained cells (P < 0.01). P450arom was present sporadically in a few luteal cells throughout pregnancy, but the number of positively immunostained cells decreased during the post-implantation period. The size of cells positively immunostained for P450arom was not significantly different from that of negatively immunostained cells. The whole placenta was negatively immunostained for P450scc, 3betaHSD and P450c17, but P450arom was present in the syncytiotrophoblasts and endothelial cells of maternal blood vessels. These results indicate that, in the Japanese black bear, corpora lutea are a source of progesterone which may play an important role in the maintenance of delayed implantation and fetal development during pregnancy. Corpora lutea have a minimum capability to synthesize androgen in small luteal cells and oestrogen in normal-sized luteal cells during pregnancy, and placentae have the ability to synthesize oestrogen during late pregnancy.


1995 ◽  
Vol 7 (3) ◽  
pp. 303 ◽  
Author(s):  
RT Gemmell

The corpus luteum (CL) is a transitory organ which has a regulatory role in reproduction. Sharks, amphibians and reptiles have corpora lutea that produce progesterone which influences the rate of embryonic development. The egg-laying monotremes and the two major mammalian groups, eutherian and marsupial, have a CL that secretes progesterone. Most eutherians have allowed for the uterine development of their young by extending the length of the oestrous cycle and the CL or placenta actively secretes progesterone until birth. Gestation in the marsupial does not extend beyond the length of an oestrous cycle and the major part of fetal development takes place in the pouch. Where the extension of the post-luteal phase in the eutherian has allowed for the uterine development of young, the marsupial has extended the pre-luteal phase of the oestrous cycle and has evolved an alternative reproductive strategy, embryonic diapause. The mechanism for the secretion of hormones from the CL has been controversial for many years. Densely-staining secretory granules have been observed in the CL of sharks, marsupials and eutherians. These granules have been reported to contain relaxin, oxytocin or mesotocin, and progesterone. A hypothesis to suit all available data is that all hormones secreted by the CL are transported within such granules. In conclusion, although there are obvious differences in the mode of reproduction in the two main mammalian groups, it is apparent that there is a great deal of similarity in the hormonal control of regression of the CL and parturition.


1996 ◽  
Vol 1996 ◽  
pp. 69-69
Author(s):  
AJ Holt ◽  
RG Rodway ◽  
JBC Findlay ◽  
HS Sands ◽  
DN Batchelder

The role of β-carotene in the fertility of ruminant animals has long been acknowledged (Friesecke, 1978). Initially this was thought to be due to its action as a vitamin A precursor but recently β-carotene itself has been considered responsible for improving reproductive performance (Hurley & Doane, 1989). The mechanism by which β-carotcne acts is unclear, but as its concentration in the corpus luteum was typically found to be 70μg per gram of tissue, its biological action is probably exerted in this area.β-Carotene has been studied in the bovine corpus luteum using Raman spectroscopy, high performance liquid chromatography (HPLC) and gel filtration chromatography. The structure of β-carotene produces a characteristic Raman spectrum and by utilising an imaging technique, photographs of isolated luteal cells were obtained indicating the regions of β-carotene within them. Differential centrifugation was used to obtain pure subcellular fractions of luteal cells.


Sign in / Sign up

Export Citation Format

Share Document