scholarly journals Impact of obesity and leptin treatment on adipocyte gene expression in Psammomys obesus

2000 ◽  
Vol 164 (1) ◽  
pp. 45-50 ◽  
Author(s):  
A Sanigorski ◽  
D Cameron-Smith ◽  
P Lewandowski ◽  
K Walder ◽  
A de Silva ◽  
...  

We examined the effects of leptin treatment on the expression of key genes in adipocyte metabolism in Psammomys obesus (P. obesus), a polygenic rodent model of obesity. Lean and obese P. obesus were given three daily intraperitoneal injections of either saline or leptin (total of 45 mg/kg per day) for 7 days. In lean animals, leptin treatment led to reductions in food intake, body weight and fat mass. Pair-fed animals matched for the reduction in food intake of the lean leptin-treated animals demonstrated similar reductions in body weight and fat mass. In obese P. obesus, leptin treatment failed to have any effect on body weight or body fat mass, indicating leptin resistance. Lipoprotein lipase, hormone-sensitive lipase and peroxisome proliferator activated receptor gamma 2 mRNA levels were significantly reduced in lean leptin-treated animals, whereas pair-fed animals were similar to lean controls. Uncoupling protein 2 and glycerol phosphate acyltransferase were also reduced in the lean leptin-treated animals, but not significantly so. Obese animals did not show any gene expression changes after leptin treatment. In conclusion, high circulating concentrations of leptin in lean P. obesus resulted in decreased gene expression of a number of key lipid enzymes, independent of changes in food intake, body weight and fat mass. These effects of leptin were not found in obese P. obesus.


2008 ◽  
Vol 294 (4) ◽  
pp. E752-E760 ◽  
Author(s):  
Jacquelyn A. Reed ◽  
Stephen C. Benoit ◽  
Paul T. Pfluger ◽  
Matthias H. Tschöp ◽  
David A. D'Alessio ◽  
...  

Ghrelin is a gut peptide that stimulates food intake and increases body fat mass when administered centrally or peripherally. In this study, ghrelin was overexpressed in neurons using the neuron-specific enolase (NSE) promoter sequences and mouse ghrelin cDNA (NSE-Ghr). Ghrelin expression in NSE-Ghr brain tissues was increased compared with wild-type mice. Ghrelin expression was also increased to a much smaller extent in liver of these mice, but mRNA levels in stomach or duodenum did not differ from wild-type mice. Body weight and composition was analyzed in two lines of NSE-Ghr mice, one line with increased circulating bioactive ghrelin (L43) and one line without (L73). No increases in body weight, food intake, or fat mass were found. Energy expenditure was measured in L43 mice and did not differ from wild-type controls, whereas locomotor activity was increased in NSE-Ghr mice. Young NSE-Ghr mice had normal glucose tolerance; however, L43 NSE-Ghr mice, but not L73 mice, developed glucose intolerance at 32 wk of age. Despite the impaired glucose tolerance in L43 mice, insulin levels did not differ from those of wild-type mice. These findings suggest a role for ghrelin in age-associated impairments of glucose homeostasis.



2001 ◽  
Vol 171 (2) ◽  
pp. 349-354 ◽  
Author(s):  
M Rocha ◽  
E Grueso ◽  
M Puerta

Oestradiol is a potent anorectic agent that reduces both food intake and body weight. Since leptin is known to reduce food intake, we first analysed if the anorectic effect of oestradiol is driven by an increased leptin concentration in either cerebrospinal fluid or plasma. Oestradiol also reduces body weight and fat mass. Accordingly, a decrease in plasma leptin concentration can also be expected after an oestradiol-driven reduction in fat mass. To test this hypothesis was the second aim of this study. Female Wistar rats received oestradiol chronically during 14 days. During the first week of treatment there was a reduction in food intake, body weight and fat mass that returned to initial values during the second week, but no changes in ob mRNA levels were found in white adipose tissue depots. There was no effect of treatment or time on plasma and cerebrospinal fluid leptin concentrations. Therefore, the anorectic effect of oestradiol is not driven by an increase in leptin concentration either in plasma or in cerebrospinal fluid, and the reduction in fat mass that oestradiol produces is not followed by a reduction leptin concentration.



1997 ◽  
Vol 272 (6) ◽  
pp. E1031-E1036 ◽  
Author(s):  
H. Li ◽  
M. Matheny ◽  
P. J. Scarpace

To investigate the role of beta 3-adrenergic receptors in the suppression of leptin gene expression, we fasted F-344 rats to decrease leptin mRNA levels, refed the rats to stimulate leptin mRNA production, and examined the ability of the beta 3-adrenergic agonist CGP-12177 to prevent the rise in leptin mRNA levels. In the initial 2 h after CGP-12177 (0.75 mg/kg), there were significant reductions in both food consumption and leptin mRNA levels in epididymal, perirenal, and interscapular white adipose tissue. We were unable to detect leptin mRNA in interscapular brown adipose tissue (IBAT), whereas there was a significant increase in uncoupling protein mRNA levels in IBAT after CGP-12177. The suppression of leptin mRNA and food intake by CGP-12177 was confirmed in a second experiment using another rat strain, the F-344 x BN. Furthermore, refeeding after a period of fasting increased leptin mRNA, which was prevented by CGP-12177. These data indicate a role for beta 3-adrenergic-mediated regulation of leptin gene expression in nonmutant rodents and are consistent with other reports suggesting that beta 3-adrenergic agonists suppress food intake.



2005 ◽  
Vol 289 (1) ◽  
pp. E40-E45 ◽  
Author(s):  
Denis Arsenijevic ◽  
Eva Gallmann ◽  
William Moses ◽  
Thomas Lutz ◽  
Charlotte Erlanson-Albertsson ◽  
...  

This study investigated the chronic effect of enterostatin on body weight and some of the associated changes in postprandial metabolism. Rats were adapted to 6 h of food access/day and a choice of low-fat and high-fat (HF) food and then given enterostatin or vehicle by an intraperitoneally implanted minipump delivering 160 nmol enterostatin/h continuously over a 5-day infusion period. Enterostatin resulted in a slight but significant reduction of HF intake and body weight. After the last 6-h food access period, enterostatin-treated animals had lower plasma triglyceride and free fatty acid but higher plasma glucose and lactate levels than control animals. Enterostatin infusion resulted in increased uncoupling protein-2 (UCP2) expression in various tissues, including epididymal fat and liver. UCP2 was reduced in the pancreas of enterostatin-treated animals, and this was associated with increased plasma levels of insulin and amylin. Whether these two hormones are involved in the observed decreased food intake due to enterostatin remains to be determined. As lipid metabolism appeared to be altered by enterostatin, we measured peroxisome proliferator-activated receptor (PPAR) expression in tissues and observed that PPARα, -β, -γ1, and -γ2 expression were modified by enterostatin in epididymal fat, pancreas, and liver. This further links altered lipid metabolism with body weight loss. Our data suggest that alterations in UCP2 and PPARγ2 play a role in the control of insulin and amylin release from the pancreas. This implies that enterostatin changes lipid and carbohydrate metabolic pathways in addition to its effects on food intake and energy expenditure.



Endocrinology ◽  
2011 ◽  
Vol 152 (11) ◽  
pp. 4116-4126 ◽  
Author(s):  
Miriam Granado ◽  
Cristina García-Cáceres ◽  
Esther Fuente-Martín ◽  
Francisca Díaz ◽  
Virginia Mela ◽  
...  

In rodents there is a rise in serum leptin levels between postnatal days (PND) 5 and 14, with this neonatal leptin surge reported to modulate the maturation of hypothalamic circuits involved in appetite regulation. We hypothesized that acute changes in neonatal leptin levels have different long-term metabolic effects depending on how and when this surge is modified. To advance the timing of the normal leptin peak, male Wistar rats were injected with leptin (sc, 3 μg/g) on PND 2. To ablate the leptin peak on PND 10, a pegylated leptin antagonist (sc, 9 μg/g) was injected. Controls received vehicle. All rats were allowed to eat ad libitum until PND 150. Increased leptin on PND 2 reduced food intake (P < 0.01) after 3 months of age with no effect on body weight. Levels of total ghrelin were reduced (P < 0.001) and acylated ghrelin increased (P < 0.05), with no other modifications in metabolic hormones. In contrast, treatment with the leptin antagonist on PND 9 did not affect food intake but reduced body weight beginning around PND 60 (P < 0.02). This was associated with a reduction in fat mass, insulin (P < 0.01), and leptin (P < 0.007) levels and an increase in testosterone levels (P < 0.01). Hypothalamic neuropeptide Y (P < 0.05) and leptin receptor (P < 0.005) mRNA levels were reduced, whereas mRNA levels for uncoupling protein 2 (P < 0.005) were increased in visceral fat, which may indicate an increase in energy expenditure. In conclusion, acute changes in neonatal leptin levels induce different metabolic profiles depending on how and when leptin levels are modified.



2021 ◽  
pp. 113464
Author(s):  
Mitchell A. Head ◽  
Allen S. Levine ◽  
David G. Christian ◽  
Anica Klockars ◽  
Pawel K. Olszewski


2021 ◽  
Author(s):  
Sebastian Dieckmann ◽  
Akim Strohmeyer ◽  
Monja Willershaeuser ◽  
Stefanie Maurer ◽  
Wolfgang Wurst ◽  
...  

Objective Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the phenotyping of a single constitutive UCP1-knockout model. To address this issue, we generated a novel UCP1-knockout model by Cre-mediated deletion of Exon 2 in the UCP1 gene. We studied the effect of constitutive UCP1 knockout on metabolism and the development of diet-induced obesity. Methods UCP1 knockout and wildtype mice were housed at 30°C and fed a control diet for 4-weeks followed by 8-weeks of high-fat diet. Body weight and food intake were monitored continuously over the course of the study and indirect calorimetry was used to determine energy expenditure during both feeding periods. Results Based on Western blot analysis, thermal imaging and noradrenaline test, we confirmed the lack of functional UCP1 in knockout mice. However, body weight gain, food intake and energy expenditure were not affected by deletion of UCP1 gene function during both feeding periods. Conclusion Conclusively, we show that UCP1 does not protect against diet-induced obesity at thermoneutrality. Further we introduce a novel UCP1-KO mouse enabling the generation of conditional UCP1-knockout mice to scrutinize the contribution of UCP1 to energy metabolism in different cell types or life stages.



2018 ◽  
Vol 107 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Yuko Maejima ◽  
Shoko Yokota ◽  
Katsuhiko Nishimori ◽  
Kenju Shimomura

Oxytocin was discovered in 1906 as a peptide that promotes delivery and milk ejection; however, its additional physiological functions were determined 100 years later. Many recent articles have reported newly discovered effects of oxytocin on social communication, bonding, reward-related behavior, adipose tissue, and muscle and food intake regulation. Because oxytocin neurons project to various regions in the brain that contribute to both feeding reward (hedonic feeding) and the regulation of energy balance (homeostatic feeding), the mechanisms of oxytocin on food intake regulation are complicated and largely unknown. Oxytocin neurons in the paraventricular nucleus (PVN) receive neural projections from the arcuate nucleus (ARC), which is an important center for feeding regulation. On the other hand, these neurons in the PVN and supraoptic nucleus project to the ARC. PVN oxytocin neurons also project to the brain stem and the reward-related limbic system. In addition to this, oxytocin induces lipolysis and decreases fat mass. However, these effects in feeding and adipose tissue are known to be dependent on body weight (BW). Oxytocin treatment is more effective in food intake regulation and fat mass decline for individuals with leptin resistance and higher BW, but is known to be less effective in individuals with normal BW. In this review, we present in detail the recent findings on the physiological role of oxytocin in feeding regulation and the anorexigenic neural pathway of oxytocin neurons, as well as the advantage of oxytocin usage for anti-obesity treatment.



2018 ◽  
Vol 20 (1) ◽  
pp. 88 ◽  
Author(s):  
Mehdi Labyb ◽  
Chloé Chrétien ◽  
Aurélie Caillon ◽  
Françoise Rohner-Jeanrenaud ◽  
Jordi Altirriba

Whereas leptin administration only has a negligible effect on the treatment of obesity, it has been demonstrated that its action can be improved by co-administration of leptin and one of its sensitizers. Considering that oxytocin treatment decreases body weight in obese animals and humans, we investigated the effects of oxytocin and leptin cotreatment. First, lean and diet-induced obese (DIO) mice were treated with oxytocin for 2 weeks and we measured the acute leptin response. Second, DIO mice were treated for 2 weeks with saline, oxytocin (50 μg/day), leptin (20 or 40 µg/day) or oxytocin plus leptin. Oxytocin pre-treatment restored a normal acute leptin response, decreasing food intake and body weight gain. Chronic continuous administration of oxytocin or leptin at 40 µg/day decreased body weight in the presence (leptin) or in the absence (oxytocin) of cumulative differences in food intake. Saline or leptin treatment at 20 µg/day had no impact on body weight. Oxytocin and leptin cotreatments had no additional effects compared with single treatments. These results point to the fact that chronic oxytocin treatment improves the acute, but not the chronic leptin response, suggesting that this treatment could be used to improve the short-term satiety effect of leptin.



Endocrinology ◽  
2006 ◽  
Vol 147 (12) ◽  
pp. 5855-5864 ◽  
Author(s):  
Jonathan D. Roth ◽  
Heather Hughes ◽  
Eric Kendall ◽  
Alain D. Baron ◽  
Christen M. Anderson

Effects of amylin and pair feeding (PF) on body weight and metabolic parameters were characterized in diet-induced obesity-prone rats. Peripherally administered rat amylin (300 μg/kg·d, 22d) reduced food intake and slowed weight gain: approximately 10% (P < 0.05), similar to PF. Fat loss was 3-fold greater in amylin-treated rats vs. PF (P < 0.05). Whereas PF decreased lean tissue (P < 0.05 vs. vehicle controls; VEH), amylin did not. During wk 1, amylin and PF reduced 24-h respiratory quotient (mean ± se, 0.82 ± 0.0, 0.81 ± 0.0, respectively; P < 0.05) similar to VEH (0.84 ± 0.01). Energy expenditure (EE mean ± se) tended to be reduced by PF (5.67 ± 0.1 kcal/h·kg) and maintained by amylin (5.86 ± 0.1 kcal/h·kg) relative to VEH (5.77 ± 0.0 kcal/h·kg). By wk 3, respiratory quotient no longer differed; however, EE increased with amylin treatment (5.74 ± 0.09 kcal/·kg; P < 0.05) relative to VEH (5.49 ± 0.06) and PF (5.38 ± 0.07 kcal/h·kg). Differences in EE, attributed to differences in lean mass, argued against specific amylin-induced thermogenesis. Weight loss in amylin and pair-fed rats was accompanied by similar increases arcuate neuropeptide Y mRNA (P < 0.05). Amylin treatment, but not PF, increased proopiomelanocortin mRNA levels (P < 0.05 vs. VEH). In a rodent model of obesity, amylin reduced body weight and body fat, with relative preservation of lean tissue, through anorexigenic and specific metabolic effects.



Sign in / Sign up

Export Citation Format

Share Document