scholarly journals Contrasting effects of different levels of food intake and adiposity on LH secretion and hypothalamic gene expression in sheep

2002 ◽  
Vol 175 (2) ◽  
pp. 383-393 ◽  
Author(s):  
ZA Archer ◽  
SM Rhind ◽  
PA Findlay ◽  
CE Kyle ◽  
L Thomas ◽  
...  

Body reserves (long-term) and food intake (short-term) both contribute nutritional feedback to the hypothalamus. Reproductive neuroendocrine output (GnRH/LH) is stimulated by increased food intake and not by high adiposity in sheep, but it is unknown whether appetite-regulating hypothalamic neurons show this differential response. Castrated male sheep (Scottish Blackface) with oestradiol implants were studied in two 4 week experiments. In Experiment 1, sheep were fed to maintain the initial body condition (BC) score of 2.0+/-0.00 (lower BC (LBC), n=7) or 2.9+/-0.09 (higher BC (HBC), n=9), and liveweight of 43+/-1.1 and 59+/-1.6 kg respectively. LBC and HBC sheep had similar mean plasma LH concentration, pulse frequency and amplitude, but HBC animals had higher mean plasma concentrations of insulin (P<0.01), leptin (P<0.01) and glucose (P<0.01). Gene expression (measured by in situ hybridisation) in the hypothalamic arcuate nucleus (ARC) was higher in LBC than HBC sheep for neuropeptide Y (NPY; 486% of HBC, P<0.01), agouti-related peptide (AGRP; 467%, P<0.05) and leptin receptor (OB-Rb; 141%, P<0.05), but lower for cocaine- and amphetamine-regulated transcript (CART; 92%, P<0.05) and similar between groups for pro-opiomelanocortin (POMC). In Experiment 2, sheep with initial mean BC score 2.4+/-0.03 and liveweight 55+/-0.8 kg were fed a liveweight-maintenance ration (low intake, LI, n=7) while sheep with initial mean BC score 2.0+/-0.03 and liveweight 43+/-1.4 kg were fed freely so that BC score increased to 2.5+/-0.00 and liveweight increased to 54+/-1.4 kg (high intake, HI, n=9). Compared with LI, HI sheep had higher mean plasma LH (P<0.05), baseline LH (P<0.01) and pulse amplitude (P<0.01) and showed a trend towards higher pulse frequency. Although there were no differences in final mean plasma concentrations, there were significant increases over time in mean concentrations of insulin (P<0.001), leptin (P<0.05) and glucose (P<0.001) in HI sheep. Gene expression for AGRP in the ARC was higher in HI than LI animals (453% of LI; P<0.05), but expression levels were similar for NPY, OB-Rb, CART and POMC. Thus, the hypothalamus shows differential responses to steady-state adiposity as opposed to an increase in food intake, in terms of both reproductive neuroendocrine activity and hypothalamic appetite-regulating pathways. Differences in hypothalamic gene expression were largely consistent with contemporary levels of systemic leptin and insulin feedback; however, increased nutritional feedback was stimulatory to GnRH/LH whereas constant high feedback was not. The hypothalamus therefore has the ability to retain a nutritional memory that can influence subsequent responses.

2005 ◽  
Vol 184 (3) ◽  
pp. 515-525 ◽  
Author(s):  
Z A Archer ◽  
S M Rhind ◽  
P A Findlay ◽  
C E Kyle ◽  
M C Barber ◽  
...  

Nutritional feedback provided by systemic hormones, such as insulin and leptin, influences reproductive neuroendocrine output within the hypothalamus, yet the mechanisms and their interaction with photoperiodic cues remain unresolved in seasonal species. Here, peripheral glucose (G) infusion was used to increase endogenous concentrations of insulin and leptin in food-restricted sheep kept in either long-day (LD) or short-day (SD) photoperiod, and responses were examined in terms of pulsatile luteinising hormone (LH) (gonadotrophin-releasing hormone by inference) output and hypothalamic gene expression for nutritionally sensitive neuropeptides and receptors. We addressed the hypothesis that these hypothalamic responses were correlated and influenced by photoperiod. Oestradiol-implanted, castrated male sheep were kept 16 weeks in SD (8 h light/day) or LD (16 h light/day) and then transferred to the opposite photoperiods for 8 weeks, during which food was restricted to 90% requirement to maintain body weight (maintenance). For the final 6 days, food was reduced to 75% maintenance, and sheep in both photoperiods were infused intravenously with G (60 mM/h) or saline (S) (n=8/group). G-infused sheep had higher mean plasma concentrations of G, insulin and leptin than S-infused sheep, with no effect of photoperiod. In LD, but not in SD, G infusion increased LH pulse frequency and pulse amplitude. In LD, but not in SD, gene expression in the hypothalamic arcuate nucleus was lower in G- than S-infused sheep for neuropeptide Y (NPY) and agouti-related peptide (AGRP) and was higher in G- than S-infused sheep for pro-opiomelanocortin (POMC). Gene expression for leptin and insulin receptors was not affected by photoperiod or infusion. These results are consistent with the involvement of NPY, AGRP and POMC in mediating the reproductive neuroendocrine response to increased systemic nutritional feedback, and they support the hypothesis that hypothalamic responses to nutritional feedback are influenced by photoperiod in sheep.


1999 ◽  
Vol 160 (3) ◽  
pp. 469-481 ◽  
Author(s):  
AJ Tilbrook ◽  
BJ Canny ◽  
MD Serapiglia ◽  
TJ Ambrose ◽  
IJ Clarke

In this study we used an isolation/restraint stress to test the hypothesis that stress will affect the secretion of LH differently in gonadectomised rams and ewes treated with different combinations of sex steroids. Romney Marsh sheep were gonadectomised two weeks prior to these experiments. In the first experiment male and female sheep were treated with vehicle or different sex steroids for 7 days prior to the application of the isolation/restraint stress. Male sheep received either i.m. oil (control rams) or 6 mg testosterone propionate injections every 12 h. Female sheep were given empty s.c. implants (control ewes), or 2x1 cm s.c. implants containing oestradiol, or an intravaginal controlled internal drug release device containing 0.3 g progesterone, or the combination of oestradiol and progesterone. There were four animals in each group. On the day of application of the isolation/restraint stress, blood samples were collected every 10 min for 16 h for the subsequent measurement of plasma LH and cortisol concentrations. After 8 h the stress was applied for 4 h. Two weeks later, blood samples were collected for a further 16 h from the control rams and ewes, but on this day no stress was imposed. In the second experiment, separate control gonadectomised rams and ewes (n=4/group) were studied for 7 h on 3 consecutive days, when separate treatments were applied. On day 1, the animals received no treatment; on day 2, isolation/restraint stress was applied after 3 h; and on day 3, an i. v. injection of 2 microg/kg ACTH1-24 was given after 3 h. On each day, blood samples were collected every 10 min and the LH response to the i.v. injection of 500 ng GnRH administered after 5 h of sampling was measured. In Experiment 1, the secretion of LH was suppressed during isolation/restraint in all groups but the parameters of LH secretion (LH pulse frequency and amplitude) that were affected varied between groups. In control rams, LH pulse amplitude, and not frequency, was decreased during isolation/restraint whereas in rams treated with testosterone propionate the stressor reduced pulse frequency and not amplitude. In control ewes, isolation/restraint decreased LH pulse frequency but not amplitude. Isolation/restraint reduced both LH pulse frequency and amplitude in ewes treated with oestradiol, LH pulse frequency in ewes treated with progesterone and only LH pulse amplitude in ewes treated with both oestradiol and progesterone. There was no change in LH secretion during the day of no stress. Plasma concentrations of cortisol were higher during isolation/restraint than on the day of no stress. On the day of isolation/restraint maximal concentrations of cortisol were observed during the application of the stressor but there were no differences between groups in the magnitude of this response. In Experiment 2, isolation/restraint reduced the LH response to GnRH in rams but not ewes and ACTH reduced the LH response to GnRH both in rams and ewes. Our results show that the mechanism(s) by which isolation/restraint stress suppresses LH secretion in sheep is influenced by sex steroids. The predominance of particular sex steroids in the circulation may affect the extent to which stress inhibits the secretion of GnRH from the hypothalamus and/or the responsiveness of the pituitary gland to the actions of GnRH. There are also differences between the sexes in the effects of stress on LH secretion that are independent of the sex steroids.


1987 ◽  
Vol 114 (1) ◽  
pp. 73-79 ◽  
Author(s):  
G. B. Martin ◽  
P. L. Taylor ◽  
A. S. McNeilly

ABSTRACT Previous work has shown that treatment of ewes with steroid-free bovine follicular fluid (bFF), a rich source of inhibin, partially inhibits the increase in mean plasma concentrations of LH induced by ovariectomy. The present experiment was designed to test the hypothesis that this effect was a reflection of reduced LH pulse amplitude which would only be expressed at high (pharmacological) doses of bFF. To do this, we assessed the dose–response to bFF of the secretion of FSH and LH pulses in intact and acutely ovariectomized ewes. In intact ewes, a low dose of bFF (0·2 ml s.c. every 8 h) had no detectable effect on the secretion of FSH, an intermediate dose (0·6 ml s.c. every 8 h) depressed FSH concentrations for about 24 h and a high dose (1·8 ml s.c. every 8 h) reduced FSH concentrations to undetectable levels. In ewes treated with 1·8 ml bFF, FSH concentrations also remained undetectable after ovariectomy and did not increase until treatment was withdrawn. In ewes treated with 0·6 ml bFF, FSH concentrations were maintained at normal intact levels for about 32 h following ovariectomy but then rose to normal ovariectomized levels. In ewes treated with 0·2 ml bFF, FSH concentrations increased immediately after ovariectomy but more slowly than in control ovariectomized ewes. Profiles of LH pulses were recorded after ovariectomy, during and after the withdrawal of bFF treatment. In ewes treated with the highest dose (1·8 ml s.c. every 8 h), mean LH levels and pulse amplitude were lower than in control ewes and increased significantly following withdrawal of treatment. None of the other pulse variables measured (apparent half-life, pulse interval, nadir) were significantly affected. The lower doses did not significantly affect LH secretion. It was concluded that FSH secretion can be inhibited for short periods by low doses of inhibin and that a dose of 0·6 ml bFF every 8 h is approximately equivalent to normal ovarian output. However, another factor, possibly oestrogen, is also involved in the long-term regulation of plasma FSH concentrations. The inhibitory effect of bFF on LH pulse amplitude was only observed at the highest dose, suggesting that it is a pharmacological effect and that it is unlikely that inhibin plays a major role in the control of tonic LH secretion. J. Endocr. (1987) 114, 73–79


1989 ◽  
Vol 120 (2) ◽  
pp. 207-214 ◽  
Author(s):  
I. J. Clarke ◽  
J. T. Cummins ◽  
M. E. Crowder ◽  
T. M. Nett

ABSTRACT The effects of long-term treatment with physiological doses of oestradiol or oestradiol plus progesterone on plasma gonadotrophin levels and pituitary content of LH and gonadotrophin-releasing hormone (GnRH) receptors were studied in ovariectomized–hypothalamo-pituitary disconnected ewes given 250 ng pulses of GnRH every 2 h (i.v.). A pilot experiment showed that 3 cm long Silastic implants (s.c.) reduced both LH pulse frequency and pulse amplitude in long-term (> 6 months) ovariectomized ewes. The main experiment was conducted over 3 weeks in ovariectomized–hypothalamo-pituitary disconnected ewes that had received pulsatile GnRH replacement for 1 week after pituitary surgery. Group 1 (n = 5) received GnRH pulses alone throughout the study. Group 2 (n = 6) received oestradiol in week 2 and oestradiol plus progesterone in week 3 and in group 3 (n = 6) the steroid treatments were reversed. Oestradiol reduced (P < 0·05) the mean (± s.e.m.) amplitude of LH in pulses in group 2 (from 8·2 ± 1·6 to 5·0 ± 0·5 μg/l) and group 3 (from 11·6 ± 1·2 to 9·3 ±1·0 μg/l); an additional effect of progesterone was seen in group 2 but not group 3. The amplitudes of the LH pulses did not change in the control ewes. Plasma concentrations of FSH were reduced by approximately 50% by the oestradiol treatments with no additional effects of progesterone. There was no effect of steroidal treatment on pituitary content of LH or pituitary levels of GnRH receptors. We conclude that long-term oestradiol treatment, with or without progesterone, reduces plasma amplitudes of LH pulses by a direct pituitary effect, but the magnitude of this effect was less than that observed on GnRH secretion in short-term ovariectomized ewes in an earlier study. The reduction in plasma LH pulse amplitude is not due to a direct pituitary effect of these steroids on GnRH receptor number. Journal of Endocrinology (1989) 120, 207–214


1993 ◽  
Vol 265 (2) ◽  
pp. E304-E313
Author(s):  
Q. Dong ◽  
B. Li ◽  
H. Rintala ◽  
S. Blair ◽  
J. Spaliviero ◽  
...  

The effect of food restriction on circulating luteinizing hormone (LH) levels in orchidectomized rats is controversial. The present study demonstrates that decreasing food intake by 50% for 3-10 days in orchidectomized rats increases LH pulse amplitude, length, area under pulse curve, and mean levels but decreases LH pulse frequency compared with ad-lib fed, orchidectomized controls. The effects on pulsatile LH secretion of food reduction by 50% with or without dilution by cellulose to maintain food volume in orchidectomized rats were also examined. Food volume influences pulsatile LH secretion independent of macronutrient effect after 3 days of food restriction, but subsequently macronutrient deprivation predominates. The exaggerated increase in LH levels in orchidectomized rats subject to food restriction for 7 days was not due to immunochemical or chromatographic heterogeneity or alteration in biopotency of circulating LH molecules. Intravenously injected 125I-labeled rat LH analyzed by noncompartmental modeling revealed that neither LH clearance nor mean residence time was reduced by food restriction. We conclude that during food restriction in orchidectomized rats, increases in LH pulse amplitude exceed and precede the decreases in LH pulse frequency, although the early changes in pulse amplitude are predominantly due to reduced food volume rather than macronutrient deprivation.


1988 ◽  
Vol 118 (2) ◽  
pp. 259-264 ◽  
Author(s):  
K. T. O'Byrne ◽  
S. F. Lunn ◽  
A. F. Dixson

ABSTRACT Stressful stimuli associated with aggressive encounters and low social rank may affect female fertility in a variety of mammalian species. In these experiments we examined the effects of aggressive encounters and physical restraint in a primate chair on the patterns of LH secretion in ovariectomized, oestrogen-primed female marmosets. Receipt of aggression from a female conspecific, followed by physical restraint for collection of blood samples (at 10-min intervals for 4 h), resulted in marked declines in LH concentrations during oestradiol-induced LH surges in five animals (from 112 ± 24 μg/l to 45±12 μg/l; group means ± s.e.m.; P<0·05). This was due to reductions in LH pulse amplitude rather than to changes in pulse frequency. Decreases in plasma concentrations of LH were reversed by treating females with exogenous LH-releasing hormone (LHRH). Cortisol treatment had no effect on LH levels during oestrogen-induced LH surges. Effects of aggressive encounters and physical restraint on plasma LH were not therefore due to reduced pituitary responsiveness to LHRH or to increased plasma concentrations of cortisol. In separate experiments it was found that physical restraint alone had no effect on plasma LH in habituated subjects, and that decreases in plasma LH after receipt of aggression only occurred if animals were subsequently placed in the restraint chair. A summation of stressful effects is therefore required to produce the fall in circulating LH. A summation of social and other environmental stressors may also underlie the reduced fertility seen in free-living animals. J. Endocr. (1988) 118, 259–264


1991 ◽  
Vol 131 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Q. Dong ◽  
R. M. Lazarus ◽  
L. S. Wong ◽  
M. Vellios ◽  
D. J. Handelsman

ABSTRACT This study aimed to determine the effect of streptozotocin (STZ)-induced diabetes on pulsatile LH secretion in the mature male rat. LH pulse frequency was reduced by 56% and pulse amplitude by 54%, with a consequential decrease of 72% in mean LH levels 8 days after i.v. administration of STZ (55 mg/kg) to castrated Wistar rats compared with castrated non-diabetic controls. Twice daily insulin treatment completely reversed all parameters of pulsatile LH secretion to control values. Food-restricted non-diabetic controls, studied to distinguish the metabolic effect of diabetes from that of concurrent weight loss, demonstrated a 34% reduction in LH pulse frequency but no significant changes in LH pulse amplitude or mean LH levels compared with non-diabetic controls given free access to food. To distinguish whether the decreased LH pulse amplitude in diabetes was due to a reduction in either the quantity of hypothalamic gonadotrophin-releasing hormone (GnRH) released per secretory episode or to decreased pituitary responsiveness to GnRH, the responsiveness of the pituitary to exogenous GnRH (1–1000 ng/kg body weight) was tested in diabetic rats after castration, using a full Latin square experimental design. The net LH response (total area under response curve over 40 min following GnRH) was decreased by 33% (P=0·001) in diabetic compared with control rats. The decreased LH pulse frequency in STZ-induced diabetes therefore suggests that the metabolic effect of diabetes is to decelerate directly the firing rate of the hypothalamic GnRH pulse generator independent of testicular feed-back. These effects were fully reversed by insulin treatment and were only partly due to the associated weight loss. The impaired pituitary responsiveness to GnRH is at least partly involved in the reduction of LH pulse amplitude. Journal of Endocrinology (1991) 131, 49–55


1997 ◽  
Vol 152 (2) ◽  
pp. 329-337 ◽  
Author(s):  
C L Adam ◽  
P A Findlay ◽  
C E Kyle ◽  
P Young ◽  
J G Mercer

Abstract Castrate male sheep (wethers, average liveweight 38 ± 0·6 kg) were given one of the following diets for 10 weeks followed by euthanasia (n=8/group): high-energy high-protein providing 1·5 times the energy required to maintain liveweight (maintenance) (group 1·5M), low-energy low-protein at 0·5 maintenance (0·5M), or low-energy high-protein at 0·5 maintenance (0·5M+P). 1·5M wethers gained 22% liveweight whereas 0·5M and 0·5M+P wethers lost 18 and 13% liveweight respectively. Relative to the 1·5M group, the 0·5M and 0·5M+P groups had similar plasma concentrations of glucose and cortisol throughout, but elevated non-esterified fatty acids (P<0·001) and reduced IGF-I and insulin (P<0·05, 0·01 or 0·001) from 1 week onwards. Each week blood samples were taken every 12 min for 4 h and plasma assayed for LH. Mean concentration over 4 h, LH pulse frequency and LH pulse amplitude showed no progressive change in 1·5M sheep. However, in both 0·5M and 0·5M+P groups mean LH increased (P<0·001 and P<0·01 respectively), pulse frequency decreased (P<0·01 and P<0·01) and pulse amplitude increased (P<0·001 and P<0·01) over the 10-week period. Anterior pituitary LH content was greater in 0·5M (P<0·01) and 0·5M+P (P<0·05) than in 1·5M sheep. Coronal sections (20 μm) of hypothalamic brain tissue were subjected to in situ hybridisation to determine gene expression for neuropeptide Y (NPY). NPY mRNA was concentrated in the arcuate nucleus and median eminence, with total amounts greater in both 0·5M (310%, P<0·001) and 0·5M+P (333%, P<0·01) groups than in 1·5M sheep (100%). These data reveal that chronic low dietary energy intake by long-term castrates, with high or low protein intake, reduces LH pulse frequency but increases the circulating levels of LH by virtue of an increase in pulse amplitude, and concomitantly increases hypothalamic NPY gene expression. Journal of Endocrinology (1997) 152, 329–337


2006 ◽  
Vol 290 (6) ◽  
pp. R1565-R1569 ◽  
Author(s):  
Kimberly P. Kinzig ◽  
Karen A. Scott ◽  
Jayson Hyun ◽  
Sheng Bi ◽  
Timothy H. Moran

The gut peptide ghrelin has been shown to stimulate food intake after both peripheral and central administration, and the hypothalamic arcuate nucleus has been proposed to be the major site for mediating this feeding stimulatory action. Ghrelin receptors are widely distributed in the brain, and hindbrain ghrelin administration has been shown to potently stimulate feeding, suggesting that there may be other sites for ghrelin action. In the present study, we have further assessed potential sites for ghrelin action by comparing the ability of lateral and fourth ventricular ghrelin administration to stimulate food intake and alter patterns of hypothalamic gene expression. Ghrelin (0.32, 1, or 3.2 nmol) in the lateral or fourth ventricle significantly increased food intake in the first 4 h after injection, with no ventricle-dependent differences in degree or time course of hyperphagia. One nanomole of ghrelin into either the lateral or fourth ventricle resulted in similar increases in arcuate nucleus neuropeptide Y mRNA expression. Expression levels of agouti-related peptide or proopiomelanocortin mRNA were not affected by ghrelin administration. These data demonstrate that ghrelin can affect food intake and hypothalamic gene expression through interactions at multiple brain sites.


2007 ◽  
Vol 292 (1) ◽  
pp. R242-R252 ◽  
Author(s):  
Chantacha Anukulkitch ◽  
Alexandra Rao ◽  
Frank R. Dunshea ◽  
Dominique Blache ◽  
Gerald A. Lincoln ◽  
...  

We studied the effects of photoperiod on metabolic profiles, adiposity, and gene expression of hypothalamic appetite-regulating peptides in gonad-intact and castrated Soay rams. Groups of five to six animals were studied 6, 18, or 30 wk after switching from long photoperiod (LP: 16 h of light) to short photoperiod (SP: 8 h of light). Reproductive and metabolic indexes were measured in blood plasma. Expression of neuropeptide Y (NPY), proopiomelanocortin (POMC), and leptin receptor (ObRb) in the arcuate nucleus was measured using in situ hybridization. Testosterone levels of intact animals were low under LP, increased to a peak at 16 wk under SP, and then declined. Voluntary food intake (VFI) was high under LP in both intact and castrated animals, decreased to a nadir at 12–16 wk under SP, and then recovered, but only in intact rams as the reproductive axis became photorefractory to SP. NPY gene expression varied positively and POMC expression varied negatively with the cycle in VFI, with differences between intact and castrate rams in the refractory phase. ObRb expression decreased under SP, unrelated to changes in VFI. Visceral fat weight also varied between the intact and castrated animals across the cycle. We conclude that 1) photoperiodic changes in VFI reflect changes in NPY and POMC gene expression, 2) changes in ObRb gene expression are not necessarily determinants of changes in VFI, 3) gonadal status affects the pattern of VFI that changes with photoperiod, and 4) in the absence of gonadal factors, animals can eat less but gain adiposity.


Sign in / Sign up

Export Citation Format

Share Document