scholarly journals A method for evaluating local scour depth at bridge piers due to debris accumulation

Author(s):  
Mohsen Ebrahimi ◽  
Slobodan Djordjević ◽  
Diego Panici ◽  
Gavin Tabor ◽  
Prakash Kripakaran
2016 ◽  
Vol 18 (5) ◽  
pp. 867-884 ◽  
Author(s):  
Mohammad Najafzadeh ◽  
Mohammad Rezaie Balf ◽  
Esmat Rashedi

Pier scour phenomena in the presence of debris accumulation have attracted the attention of engineers to present a precise prediction of the local scour depth. Most experimental studies of pier scour depth with debris accumulation have been performed to find an accurate formula to predict the local scour depth. However, an empirical equation with appropriate capacity of validation is not available to evaluate the local scour depth. In this way, gene-expression programming (GEP), evolutionary polynomial regression (EPR), and model tree (MT) based formulations are used to develop to predict the scour depth around bridge piers with debris effects. Laboratory data sets utilized to perform models are collected from different literature. Effective parameters on the local scour depth include geometric characterizations of bridge piers and debris, physical properties of bed sediment, and approaching flow characteristics. The efficiency of the training stages for the GEP, MT, and EPR models are investigated. Performances of the testing results for these models are compared with the traditional approaches based on regression methods. The uncertainty prediction of the MT was quantified and compared with those of existing models. Also, sensitivity analysis was performed to assign effective parameters on the scour depth prediction.


2018 ◽  
Vol 13 (2) ◽  
pp. 110-120 ◽  
Author(s):  
Ibtesam Abudallah Habib ◽  
Wan Hanna Melini Wan Mohtar ◽  
Atef Elsaiad ◽  
Ahmed El-Shafie

This study investigates the performance nose-angle piers as countermeasures for local scour reduction around piers. Four nose angles were studied, i.e., 90°, 70°, 60° and 45° and tested in a laboratory. The sediment size was fixed at 0.39 mm whereas the flow angle of attack (or skew angle) was varied at four angles, i.e., skew angles, i.e., 0°, 10°, 20° and 30°. Scour reduction was clear when decreasing nose angles and reached maximum when the nose angle is 45°. Increasing the flow velocity and skew angle was subsequently increasing the scour profile, both in vertical and transversal directions. However, the efficiency of nose angle piers was only high at low Froude number less than 0.40 where higher Froude number gives minimal changes in the maximum scour depth reduction. At a higher skew angle, although showed promising maximum scour depth reduction, the increasing pier projected width resulted in the increase of transversal lengths.


1998 ◽  
Vol 36 (2) ◽  
pp. 183-198 ◽  
Author(s):  
J.K. Kandasamy ◽  
B.W. Melville
Keyword(s):  

Author(s):  
Mohammad Reza Namaee ◽  
Jueyi Sui ◽  
Yongsheng Wu ◽  
Natalie Linklater

Local scour around piers is one of the primary causes of collapse of bridges that cross rivers. The most severe scouring occurs in cold regions where ice cover significantly changes the velocity profile. Having an accurate estimation of the maximum scour depth around bridge piers, especially in cold regions, is necessary for a safer design of piers. In this study, 3-D numerical models are compared to laboratory experiments to examine the process of local scour around bridge piers with and without smooth and rough ice cover. By using the equation of Meyer-Peter Müller, the sediment transport model is validated to approximate the transport of the sediment particles. Numerical results showed good agreements with experimental observations where the maximum scour depth and Turbulent Kinetic Energy (TKE) around bridge piers were the highest under rough ice cover conditions.


2020 ◽  
Vol 144 ◽  
pp. 01008
Author(s):  
Shaolin Yue ◽  
Huan Zhou ◽  
Wenlong Zhu ◽  
Minxi Zhang

The riverbeds or sea beds are usually composed of multi-layers of sediments. The scour around bridge piers sited on such beds is vital to the bridge safety, but is still very difficult to be predicated as its complicated interaction between the flow and bed layers. A simple model is proposed in this study for calculating the local scour maximum depth around bridge piers sited on multi-layer of sedimentary bed, which is based on HEC-18 formula revised by Richardson and Davis (2001) and the formula of the repose angle of sediment particles proposed by Cheng (1993). This model considers the particle sorting when the scour proceeds. An application of the model into the local scour depth of Guopan bridge pier sited on the Weihe River bed in Baoji city of China preliminarily demonstrates its reliability to calculate the local scour maximum depth around bridge piers sited on multi-layer of sedimentary bed.


2009 ◽  
Vol 135 (7) ◽  
pp. 609-614 ◽  
Author(s):  
Jihn-Sung Lai ◽  
Wen-Yi Chang ◽  
Chin-Lien Yen

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1462
Author(s):  
Chung-Ta Liao ◽  
Keh-Chia Yeh ◽  
Yin-Chi Lan ◽  
Ren-Kai Jhong ◽  
Yafei Jia

Local scour is a common threat to structures such as bridge piers, abutments, and dikes that are constructed on natural rivers. To reduce the risk of foundation failure, the understanding of local scour phenomenon around hydraulic structures is important. The well-predicted scour depth can be used as a reference for structural foundation design and river management. Numerical simulation is relatively efficient at studying these issues. Currently, two-dimensional (2D) mobile-bed models are widely used for river engineering. However, a common 2D model is inadequate for solving the three-dimensional (3D) flow field and local scour phenomenon because of the depth-averaged hypothesis. This causes the predicted scour depth to often be underestimated. In this study, a repose angle formula and bed geometry adjustment mechanism are integrated into a 2D mobile-bed model to improve the numerical simulation of local scour holes around structures. Comparison of the calculated and measured bed variation data reveals that a numerical model involving the improvement technique can predict the geometry of a local scour hole around spur dikes with reasonable accuracy and reliability.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3015
Author(s):  
Takuma Kadono ◽  
Sho Kato ◽  
Shinichiro Okazaki ◽  
Toshinori Matsui ◽  
Yoshio Kajitani ◽  
...  

To evaluate the stability of bridge piers affected by the local scouring, the existing formulas for estimating the maximum local scour depth have been developed based on the results of experiments conducted under a constant water level. However, the applicability of these formulas to the cases where the water level rises and falls, such as a water level change in a real river, is not clear. In this study, water flow experiments were conducted on cylindrical and oval bridge pier models to investigate the effect of iterated water level change on the progression of local scour around piers. Results of experiments with cylindrical and oval pier showed that the local scour depth and length increased by an iterated action of the water level change; however, these values converged after the number of iterated actions reached a certain time. The local scour length at upstream of the bridge pier was approximately 1.8 times larger than the theoretical value, which was calculated through the local scour depth and angle of repose in water. The local scour length is an important parameter for defining the streambed protection zone, which is one of the measures against local scour, and we showed that the streambed protection zone needs to be defined more widely.


2020 ◽  
Vol 68 (1) ◽  
pp. 70-82
Author(s):  
Mohammad Reza Namaee ◽  
Jueyi Sui

AbstractRecent studies have shown that the presence of ice cover leads to an intensified local scour pattern in the vicinity of bridge piers. To investigate the local scour pattern in the vicinity of bridge pier under ice-covered flow condition comparing to that under open channel flow condition, it is essential to examine flow field around bridge piers under different flow conditions. In order to do so, after creation of smooth and rough ice covers, three-dimensional timeaveraged velocity components around four pairs of bridge piers were measured using an Acoustic Doppler velocimetry (ADV). The ADV measured velocity profiles describe the difference between the velocity distributions in the vicinity of bridge piers under different covered conditions. Experimental results show that the vertical velocity distribution which represents the strength of downfall velocity is the greatest under rough covered condition which leads to a greater scour depth. Besides, results show that the turbulent intensity increases with pier size regardless of flow cover, which implies that larger scour depth occurs around piers with larger diameter.


2020 ◽  
Vol 6 (1) ◽  
pp. 69-84 ◽  
Author(s):  
Habibeh Ghodsi ◽  
Mohammad Javad Khanjani

Scour depth prediction is a vital issue in bridge pier design. Recently, good progress has been made in the development of artificial intelligence (AI) to predict scour depth around hydraulic structures base such as bridge piers. In this study, two hybrid intelligence models based on combination of group method of data handling (GMDH) with harmony search algorithm (HS) and shuffled complex evolution (SCE) have been developed to predict local scour depth around complex bridge piers using 82 laboratory data measured by authors and  615 data points from published literature. The results were compared to conventional GMDH models with two kinds of transfer functions called GMDH1 and GMDH2. Based upon the pile cap location, data points were divided into three categories. The performance of all utilized models was evaluated by the statistical criteria of R, RMSE, MAPE, BIAS, and SI. Performances of developed models were evaluated by experimental data points collected in laboratory experiments, together with commonly empirical equations. The results showed that GMDH2SCE was the superior model in terms of all statistical criteria in training when the pile cap was above the initial bed level and completely buried pile cap. For a partially-buried pile cap, GMDH1SCE offered the best performance. Among empirical equations, HEC-18 produced relatively good performances for different types of complex piers. This study recommends hybrid GMDH models, as powerful tools in complex bridge pier scour depth prediction.


Sign in / Sign up

Export Citation Format

Share Document