Influence of particle size scale on mechanical properties of tailings under high pressure

Author(s):  
Zhenkai Pan ◽  
Chao Zhang ◽  
Xiaogang Guo ◽  
Changkun Ma ◽  
Lei Ma ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 342
Author(s):  
Holger Lieberwirth ◽  
Lisa Kühnel

Confined bed comminution in high-pressure grinding rollers (HPGRs) and vertical roller mills (VRMs) was previously used preferably for grinding comparably homogeneous materials such as coal or clinker. Meanwhile, it started to complement or even replace tumbling mills in ore beneficiation with ore and gangue particles of rather different breakage behaviors. The selectivity in the comminution of a mixture of particles with different strengths but similar particle size distribution (PSD) of the constituents in a particle bed was investigated earlier. The strength of a material is, however, also a function of particle size. Finer particles tend to be more competent than coarser ones of the same material. In industrial ore processing using confined bed comminution, this effect cannot be neglected but even be exploited to increase efficiency. This paper presents research results on this topic based on experimental investigations with model materials and with natural particles, which were stressed in a piston–die press. It appeared that the comminution result substantially depends on the material characteristics, the composition of the mixture and the PSD of the constituents. Conclusions will be drawn for the future applications of selective comminution in mineral processing.


Author(s):  
Jun Zhao ◽  
Qinggui Li ◽  
Weixiao Cao ◽  
Zetan Liu ◽  
Xiangong Deng ◽  
...  

2021 ◽  
pp. 136943322110179
Author(s):  
DongTao Xia ◽  
ShaoJun Xie ◽  
Min Fu ◽  
Feng Zhu

Fiber reinforced recycled aggregate concrete has become a new type of green concrete material. The maximum particle size of coarse aggregates and steel fiber contents affect the mechanical properties and impact resistance of recycled aggregate concrete. However, such studies are rare in literature. The present paper shortens the gap through experimental study. A total of 144 specimens of 12 kinds of concrete mixtures were tested, which adopted different steel fiber volume admixtures (0%, 0.8%, 1.0%, 1.2%) and recycled coarse aggregates in different maximum particle sizes (9.5, 19, 31.5 mm) replacing 30% natural coarse aggregate. The compressive strength, splitting tensile strength, and impact resistance of the 12 concrete mixtures were tested. The results showed that the compressive strength, splitting tensile strength, and impact resistance of recycled aggregate concrete increased first and then decreased with the increase of the maximum particle size. The recycled aggregate concrete with the maximum particle size of 19 mm had the highest mechanical properties and impact resistance. Besides, with the increase of steel fiber content, the compressive strength, splitting tensile strength, and impact resistance of recycled aggregate concrete showed an increasing trend. Considering a large amount of experimental data and the coupling effect of steel fiber contents and the maximum particle size of coarse aggregates, the Weibull distribution function was introduced to analyze the impact test results and predict the number of resistance to impact under different failure probabilities. The results showed that the number of blows of the recycled aggregate concrete followed a two-parameter Weibull distribution, and the estimated value of the number of resistance to impact for failure increased with the increase of the failure probability.


Sign in / Sign up

Export Citation Format

Share Document