Compatibility of tailings–nonwoven geotextile under stress and the effect of sand filter

2020 ◽  
pp. 1-26
Author(s):  
S. Liu ◽  
Y. Wang ◽  
D. Feng
1997 ◽  
Vol 33 (4) ◽  
pp. 179-186 ◽  
Author(s):  
NOBUTADA NAKAMOTO ◽  
NORIYASU IWASE ◽  
KENTARO NOZAKI ◽  
MASASHI SAKAI

2009 ◽  
Vol 4 (1) ◽  
Author(s):  
E. Choi ◽  
Z. Yun ◽  
K.S. Min

In a densely populated area, a large wastewater treatment plant (WWTP) has been constructed in the underground. The plant is practically “invisible” to visitors and neighbours, and the ground level is used as a park and sport facilities in order to avoid the “not in my backyard” phenomenon. The WWTP has a 5-stage biological nutrient removal system utilizing the denitrifying PAO (dPAO) with a step feed in order to treat the weak sewage with higher nutrient removal requirement. Although the underground installation could be expected to increase plant operating temperature, the temperature increase was only 1°C. The polished final effluent from a sand filter produced average TN and TP concentrations of 5.11 mg/L and 0.91 mg/L, respectively with SS concentrations of 0.61 mg/L, indicating that the dPAO system combined with sand filter effectively produced a high quality effluent.


2003 ◽  
Vol 3 (4) ◽  
pp. 145-152 ◽  
Author(s):  
H. Heinonen-Tanski ◽  
P. Juntunen ◽  
R. Rajala ◽  
E. Haume ◽  
A. Niemelä

Municipal treated wastewater has been tertiary treated in a pilot-scale rapid sand filter. The filtration process was improved by using polyaluminium coagulants. The sand-filtered water was further treated with one or two UV reactors. The quality changes of wastewater were measured with transmittance, total phosphorus, soluble phosphorus, and somatic coliphages, FRNA-coliphages, FC, enterococci and fecal clostridia. Sand filtration alone without coagulants improved slightly some physico-chemical parameters and it had almost no effect on content of microorganisms. If coagulants were used, the filtration was more effective. The reductions were 88-98% for microbial groups and 80% for total phosphorus. The wastewater would meet the requirements for bathing waters (2,000 FC/100 ml, EU, 1976). UV further improved the hygiene level; this type of treated wastewater could be used for unrestricted irrigation (2.2 TC/100 ml, US.EPA 1992). The improvement was better if coagulants were used. The price for tertiary treatment (filtration + UV) would have been 0.036 Euro/m3 according to prices in 2001 in 22 Mm3/a. The investment cost needed for the filtration unit was 0.020 Euro/m3 (6%/15a). Filtration with coagulants is recommended in spite of its costs, since the low transmittance of unfiltered wastewater impairs the efficiency of the UV treatment.


2005 ◽  
Vol 40 (9) ◽  
pp. 3132-3136 ◽  
Author(s):  
M. Rodgers ◽  
X.-M. Zhan ◽  
J. Prendergast

2014 ◽  
Vol 3 (2) ◽  
pp. 276-286 ◽  
Author(s):  
Daneshi Navab ◽  
Banejad Hossein ◽  
Pirtag Hamedany Reza ◽  
Daneshi Vahab ◽  
Farokhi Maedeh

Along with the technology development and increasing consumption of water resources, we are experiencing low qualities in the mentioned resources. Copper brings about serious environment al pollution, threatening human health and ecosystem. This metal found variously in water resources and industrial activities. Therefore, it needs to treat the water resources from these excessive amounts. Different methods have used for this reason but the most used method during recent years has been the absorption by economic absorbers such as sand. Rapid sand filters usually used in water and wastewater treatment plants for water clarification. In this research, a single layer gravity rapid sand filter has used to reduce different concentrations of copper. sediment value and head loss arising in filter media is simulated by using combination of Carman-Kozeny, Rose and Gregory models in different discharges of rapid sand filter. Results have shown that with increasing in discharge and decreasing in input copper concentration, arriving time to given head loss, is increasing. In addition, results demonstrated that with increasing in copper concentration in influent, removal efficiency is decreasing somewhat. Results of this research can applied in an appropriate design of rapid sand filter to copper removal, a prediction of rapid sand filter ability to copper removal and an estimation of arising head loss during filter work thus evaluating of time interval backwash. DOI: http://dx.doi.org/10.3126/ije.v3i2.10641 International Journal of the Environment Vol.3(2) 2014: 276-286


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1080
Author(s):  
Clever Aparecido Valentin ◽  
Marcelo Kobelnik ◽  
Yara Barbosa Franco ◽  
Fernando Luiz Lavoie ◽  
Jefferson Lins da Silva ◽  
...  

The use of polymeric materials such as geosynthetics in infrastructure works has been increasing over the last decades, as they bring down costs and provide long-term benefits. However, the aging of polymers raises the question of its long-term durability and for this reason researchers have been studying a sort of techniques to search for the required renewal time. This paper examined a commercial polypropylene (PP) nonwoven geotextile before and after 500 h and 1000 h exposure to ultraviolet (UV) light by performing laboratory accelerated ultraviolet-aging tests. The state of the polymeric material after UV exposure was studied through a wide set of tests, including mechanical and physical tests and thermoanalytical tests and scanning electron microscopy analysis. The calorimetric evaluations (DSC) showed distinct behaviors in sample melting points, attributed to the UV radiation effect on the aged samples. Furthermore, after exposure, the samples presented low thermal stability in the thermomechanical analysis (TMA), with a continuing decrease in their thicknesses. The tensile tests showed an increase in material stiffness after exposition. This study demonstrates that UV aging has effects on the properties of the polypropylene polymer.


2022 ◽  
Vol 46 ◽  
pp. 102561
Author(s):  
Jingming Zhao ◽  
Yuying Deng ◽  
Min Dai ◽  
Yanni Wu ◽  
Imran Ali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document