scholarly journals Endothelial Cell Dysfunction—Can One Outsmart Oxidative Stress by Direct Interaction with the Pathological Oxidized or Heme-Free Soluble Guanyl-Cyclase?

2007 ◽  
Vol 18 (3) ◽  
pp. 663-669 ◽  
Author(s):  
J.-P. Stasch ◽  
P.M. Schmidt ◽  
P.I. Nedvetsky ◽  
T.Y. Arun Nedvetskaya ◽  
H.S. Kumar ◽  
...  
2019 ◽  
Vol 20 (7) ◽  
pp. 1658 ◽  
Author(s):  
Hatem Maamoun ◽  
Shahenda Abdelsalam ◽  
Asad Zeidan ◽  
Hesham Korashy ◽  
Abdelali Agouni

Physical inactivity and sedentary lifestyle contribute to the widespread epidemic of obesity among both adults and children leading to rising cases of diabetes. Cardiovascular disease complications associated with obesity and diabetes are closely linked to insulin resistance and its complex implications on vascular cells particularly endothelial cells. Endoplasmic reticulum (ER) stress is activated following disruption in post-translational protein folding and maturation within the ER in metabolic conditions characterized by heavy demand on protein synthesis, such as obesity and diabetes. ER stress has gained much interest as a key bridging and converging molecular link between insulin resistance, oxidative stress, and endothelial cell dysfunction and, hence, represents an interesting drug target for diabetes and its cardiovascular complications. We reviewed here the role of ER stress in endothelial cell dysfunction, the primary step in the onset of atherosclerosis and cardiovascular disease. We specifically focused on the contribution of oxidative stress, insulin resistance, endothelial cell death, and cellular inflammation caused by ER stress in endothelial cell dysfunction and the process of atherogenesis.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Kaicheng Xu ◽  
Haomin Zhao ◽  
Xiaolei Qiu ◽  
Xiwen Liu ◽  
Fucheng Zhao ◽  
...  

Vestigial-like 4 (VGLL4) has been found to have multiple functions in tumor development; however, its role in cardiovascular disease is unknown. The aim of this study was to investigate the effect of VGLL4 on the dysfunction and inflammatory response of Ox-LDL-induced human umbilical vein endothelial cells (HUVECs) and its mechanism, so as to provide a new theoretical basis for the diagnosis and treatment of atherosclerosis. In the present study, the protective activity of VGLL4 inhibiting Ox-LDL-induced apoptosis, oxidative stress, inflammation, and injury as well as its molecular mechanisms was examined using human umbilical vein endothelial cells (HUVECs). The results showed that the expression of VGLL4 was decreased with the increase of Ox-LDL concentration in HUVECs. In addition, the functional study found that VGLL4 overexpression alleviated Ox-LDL-induced oxidative stress, inflammation, and dysfunction and inhibited apoptosis. Further research found that VGLL4 regulated Hippo-YAP/TEAD1 signaling pathway, and the Hippo-YAP/TEAD1 signaling pathway was involved in the protective mechanism of VGLL4 on HUVECs. In conclusion, it suggests that VGLL4 protects against oxidized-LDL-induced endothelial cell dysfunction by activating the Hippo-YAP/TEAD1 signaling pathway.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1323
Author(s):  
Francisco R. Jimenez Trinidad ◽  
Marta Arrieta Ruiz ◽  
Núria Solanes Batlló ◽  
Àngela Vea Badenes ◽  
Joaquim Bobi Gibert ◽  
...  

Endothelial cell dysfunction is the principal cause of several cardiovascular diseases that are increasing in prevalence, healthcare costs, and mortality. Developing a standardized, representative in vitro model of endothelial cell dysfunction is fundamental to a greater understanding of the pathophysiology, and to aiding the development of novel pharmacological therapies. We subjected human umbilical vein endothelial cells (HUVECs) to different periods of nutrient deprivation or increasing doses of H2O2 to represent starvation or elevated oxidative stress, respectively, to investigate changes in cellular function. Both in vitro cellular models of endothelial cell dysfunction-associated senescence developed in this study, starvation and oxidative stress, were validated by markers of cellular senescence (increase in β-galactosidase activity, and changes in senescence gene markers SIRT1 and P21) and endothelial dysfunction as denoted by reductions in angiogenic and migratory capabilities. HUVECs showed a significant H2O2 concentration-dependent reduction in cell viability (p < 0.0001), and a significant increase in oxidative stress (p < 0.0001). Furthermore, HUVECs subjected to 96 h of starvation, or exposed to concentrations of H2O2 of 400 to 1000 μM resulted in impaired angiogenic and migratory potentials. These models will enable improved physiological studies of endothelial cell dysfunction, and the rapid testing of cellular efficacy and toxicity of future novel therapeutic compounds.


2008 ◽  
Vol 294 (6) ◽  
pp. H2619-H2626 ◽  
Author(s):  
Ryan M. Wolfort ◽  
Karen Y. Stokes ◽  
D. Neil Granger

Although hypercholesterolemia is known to impair endothelium-dependent vasodilation (EDV) long before the appearance of atherosclerotic plaques, it remains unclear whether the immune mechanisms that have been implicated in atherogenesis also contribute to the early oxidative stress and endothelial cell dysfunction elicited by hypercholesterolemia. EDV (wire myography), superoxide generation (cytochrome c reduction), and NAD(P)H oxidase mRNA expression were monitored in aortic rings from wild-type (WT) and mutant mice placed on either a normal diet or a cholesterol-enriched diet (HC) for 2 wk. WT mice on HC exhibited impaired EDV, enhanced superoxide generation, and increased expression of NAD(P)H oxidase subunit Nox-2 mRNA. The impaired EDV and increased superoxide generation induced by HC were significantly blunted in severe combined immunodeficient (SCID) mice and CD4+ T lymphocyte-deficient mice. These responses were also attenuated in HC mice genetically deficient in IFN-γ; however, adoptive transfer of WT-HC CD4+ T lymphocytes to IFN-γ-deficient recipients restored HC-induced responses. The HC-induced impaired EDV and oxidative stress were also attenuated in HC mice genetically deficient in Nox-2 (gp91 phox−/−) and in WT→gp91 phox−/−-HC chimeras. HC-induced gp91 phox mRNA expression was significantly blunted in mice deficient in CD4+ T cells or IFN-γ and was restored with adoptive transfer of WT-HC CD4+ T cells to IFN-γ-deficient recipients. These findings implicate the immune system in the early endothelial cell dysfunction associated with hypercholesterolemia and are consistent with a mechanism of impaired EDV that is mediated by CD4+ T cells and IFN-γ, acting through the generation of superoxide from vascular NAD(P)H oxidase.


BMC Medicine ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Gerwyn Morris ◽  
Basant K. Puri ◽  
Lisa Olive ◽  
Andre Carvalho ◽  
Michael Berk ◽  
...  

Abstract Background Potential routes whereby systemic inflammation, oxidative stress and mitochondrial dysfunction may drive the development of endothelial dysfunction and atherosclerosis, even in an environment of low cholesterol, are examined. Main text Key molecular players involved in the regulation of endothelial cell function are described, including PECAM-1, VE-cadherin, VEGFRs, SFK, Rho GEF TRIO, RAC-1, ITAM, SHP-2, MAPK/ERK, STAT-3, NF-κB, PI3K/AKT, eNOS, nitric oxide, miRNAs, KLF-4 and KLF-2. The key roles of platelet activation, xanthene oxidase and myeloperoxidase in the genesis of endothelial cell dysfunction and activation are detailed. The following roles of circulating reactive oxygen species (ROS), reactive nitrogen species and pro-inflammatory cytokines in the development of endothelial cell dysfunction are then described: paracrine signalling by circulating hydrogen peroxide, inhibition of eNOS and increased levels of mitochondrial ROS, including compromised mitochondrial dynamics, loss of calcium ion homeostasis and inactivation of SIRT-1-mediated signalling pathways. Next, loss of cellular redox homeostasis is considered, including further aspects of the roles of hydrogen peroxide signalling, the pathological consequences of elevated NF-κB, compromised S-nitrosylation and the development of hypernitrosylation and increased transcription of atherogenic miRNAs. These molecular aspects are then applied to neuroprogressive disorders by considering the following potential generators of endothelial dysfunction and activation in major depressive disorder, bipolar disorder and schizophrenia: NF-κB; platelet activation; atherogenic miRs; myeloperoxidase; xanthene oxidase and uric acid; and inflammation, oxidative stress, nitrosative stress and mitochondrial dysfunction. Conclusions Finally, on the basis of the above molecular mechanisms, details are given of potential treatment options for mitigating endothelial cell dysfunction and activation in neuroprogressive disorders.


Sign in / Sign up

Export Citation Format

Share Document