scholarly journals Micropuncture Analysis of Tubuloglomerular Feedback Regulation in Transgenic Mice

1999 ◽  
Vol 10 (12) ◽  
pp. 2614-2619
Author(s):  
JURGEN SCHNERMANN

Abstract. Micropuncture methods have been used widely as a means to define the function of single tubules and study the functional connection between tubules and afferent arterioles (so-called tubuloglomerular feedback [TGF]). Transgenic mouse strains have become a new research tool with the potential of shedding new light on the role of specific gene products in renal tubular and vascular function. The micropuncture approach has therefore been adapted to studies in the mouse kidney. Although the data presented here support the feasibility of using this technique in the mouse, technical improvements are desirable in the areas of anesthesia, ureteral urine collections, blood collections, volume replacement, and functional stability for extended time periods. During ketamine/inactin anesthesia, TGF responses could regularly be elicited in wild-type mice. In contrast, changes in loop flow did not alter stop-flow pressure in angiotensin II type 1A receptor and angiotensin-converting enzyme knockout mice. Infusion of angiotensin II in subpressor doses partially restored TGF responsiveness in angiotensin-converting enzyme knockout animals. Normal TGF responses compared to wild type were found in nitric oxide synthase I and thromboxane receptor knockout mice. Using free-flow micropuncture techniques, the proximal-distal single-nephron GFR difference was found to be augmented in aquaporin-1 and Na/H exchanger-3 knockout mice, suggesting TGF activation in these strains of mice. These results support an essential role of angiotensin II in TGF regulation mediated through the angiotensin II type 1A receptor. Chronic nitric oxide synthase I and thromboxane receptor deficiency did not change TGF responsiveness. Aquaporin-1 and Na/H exchanger-3 deficiency enhances TGF suppression of TGF probably by volume depletion-mediated TGF sensitization. The use of micropuncture methodology in transgenic mice combines old and new research tools in a way that promises to yield important new insights into single-nephron function in physiologic and pathophysiologic conditions.

2002 ◽  
Vol 70 (2) ◽  
pp. 679-684 ◽  
Author(s):  
C. Canthaboo ◽  
D. Xing ◽  
X. Q. Wei ◽  
M. J. Corbel

ABSTRACT The mechanism whereby whole-cell pertussis vaccines (WCV) confer protection against Bordetella pertussis is still not fully understood. We have previously reported that macrophage activation produced by vaccination with WCV is associated with induction of NO synthesis by macrophages in response to in vitro stimulation with B. pertussis antigens. To determine whether NO production is an effector of protection or simply a marker of activation, the susceptibility of inducible nitric oxide synthase (type II, iNOS) knockout mice to infection with B. pertussis was examined. We showed that iNOS knockout mice were more susceptible to B. pertussis respiratory challenge than wild-type mice. iNOS-deficient mice also developed a less effective protective response than wild-type mice after the same immunization with WCV. This suggests that NO plays an important role in effecting protection against B. pertussis challenge.


2000 ◽  
Vol 278 (6) ◽  
pp. F1030-F1033 ◽  
Author(s):  
V. Vallon ◽  
A. S. Verkman ◽  
J. Schnermann

To examine the role of aquaporin-1 (AQP1) in near-isosmolar fluid reabsorption in the proximal tubule, we compared osmolalities in micropuncture samples of late proximal tubular fluid and plasma in wild-type (+/+) and AQP1-knockout (−/−) mice. Compared with matched wild-type mice, the −/− animals produce a relatively hypotonic urine (607 ± 42 vs. 1,856 ± 101 mosmol/kgH2O) and have a higher plasma osmolality under micropuncture conditions (346 ± 11 vs. 318 ± 5 mosmol/kgH2O; P < 0.05). Measurements of tubular fluid osmolality were done in three groups of mice, +/+, −/−, and hydrated −/− mice in which plasma osmolality was reduced to 323 ± 1 mosmol/kgH2O. Late proximal tubular fluid osmolalities were 309 ± 5 (+/+, n= 21), 309 ± 4 (−/−, n = 24), and 284 ± 3 mosmol/kgH2O (hydrated −/−, n = 19). Tubular fluid chloride concentration averaged 152 ± 1 (+/+), 154 ± 1 (−/−), and 140 ± 1 mM (hydrated −/−). Transtubular osmotic gradients in untreated and hydrated AQP1 −/− mice were 39 ± 4 ( n = 25) and 39 ± 3 mosmol/kgH2O ( n = 19), values significantly higher than in +/+ mice (12 ± 2 mosmol/kgH2O; n = 24; both P < 0.001). AQP1 deficiency in mice generates marked luminal hypotonicity in proximal tubules, resulting from the retrieval of a hypertonic absorbate and indicating that near-isosmolar fluid absorption requires functional AQP1.


2004 ◽  
Vol 287 (4) ◽  
pp. F732-F738 ◽  
Author(s):  
Scott C. Thomson ◽  
Aihua Deng ◽  
Norikuni Komine ◽  
John S. Hammes ◽  
Roland C. Blantz ◽  
...  

Dysregulation of kidney nitric oxide synthase (NOS) I may alter renal hemodynamics in diabetes. Four types of studies were performed in anesthetized 1- to 2-wk-streptozotocin diabetic rats. 1) Glomerular filtration rate (GFR) was measured before and during NOS I blockade. Subsequent addition of nonspecific NOS blocker tested for residual NO from other isoforms. Acute systemic NOS I blockade reduced GFR only in diabetics. Nonspecific NOS blockade had no additional effect on NOS I-blocked diabetics. 2) Renal blood flow (RBF) was monitored for evidence that tubuloglomerular feedback (TGF) resets during 1 h of continuous activation with benzolamide. NOS I blockade was added to test for the role of NOS I in TGF resetting. During 1 h of TGF activation in controls, RBF initially declined and then returned to baseline. In diabetic and NOS I-blocked rats, RBF declined and remained low. 3) The ability of NOS I blockade to increase the homeostatic efficiency of TGF in diabetes was tested by micropuncture in free-flowing nephrons. The addition of NOS I blocker to the tubular fluid increased TGF efficiency in control and diabetic rats. 4) The influence of distal salt delivery on local NOS I activity was tested by micropuncture. Henle's loop was perfused at varying rates with NOS I blocker while single-nephron GFR (SNGFR) from the late proximal tubule was measured. In controls, NOS I blockade mainly reduced SNGFR when flow through Henle's loop was high. In diabetics, NOS I blockade reduced SNGFR independently of flow through Henle's loop. In conclusion, normally, salt delivered to the macula densa (MD) exerts immediate control over MD NOS I activity. In diabetes, there is ongoing overactivity of NOS I that is not regulated by MD salt.


2020 ◽  
Vol 319 (5) ◽  
pp. F908-F919
Author(s):  
Jie Zhang ◽  
Larry Qu ◽  
Jin Wei ◽  
Shan Jiang ◽  
Lan Xu ◽  
...  

Females are protected against the development of angiotensin II (ANG II)-induced hypertension compared with males, but the mechanisms have not been completely elucidated. In the present study, we hypothesized that the effect of ANG II on the macula densa nitric oxide (NO) synthase 1β (NOS1β)-mediated tubuloglomerular feedback (TGF) mechanism is different between males and females, thereby contributing to the sexual dimorphism of ANG II-induced hypertension. We used microperfusion, micropuncture, clearance of FITC-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1β expression and activity, TGF response, natriuresis, and blood pressure (BP) after a 2-wk ANG II infusion in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, ANG II induced higher expression of macula densa NOS1β, greater NO generation by the macula densa, and a lower TGF response in vitro and in vivo in females than in males; the increases of glomerular filtration rate, urine flow rate, and Na+ excretion in response to an acute volume expansion were significantly greater and the BP responses to ANG II were significantly less in females than in males. In contrast, these sex differences in the effects of ANG II on TGF, natriuretic response, and BP were largely diminished in knockout mice. In addition, tissue culture of human kidney biopsies (renal cortex) with ANG II resulted in a greater increase in NOS1β expression in females than in males. In conclusion, macula densa NOS1β-mediated TGF is a novel and important mechanism for the sex differences in ANG II-induced hypertension.


2003 ◽  
Vol 94 (6) ◽  
pp. 2534-2544 ◽  
Author(s):  
Wieslaw Kozak ◽  
Anna Kozak

Male C57BL/6J mice deficient in nitric oxide synthase (NOS) genes (knockout) and control (wild-type) mice were implanted intra-abdominally with battery-operated miniature biotelemeters (model VMFH MiniMitter, Sunriver, OR) to monitor changes in body temperature. Intravenous injection of lipopolysaccharide (LPS; 50 μg/kg) was used to trigger fever in response to systemic inflammation in mice. To induce a febrile response to localized inflammation, the mice were injected subcutaneously with pure turpentine oil (30 μl/animal) into the left hindlimb. Oral administration (gavage) of N G-monomethyl-l-arginine (l-NMMA) for 3 days (80 mg · kg−1 · day−1in corn oil) before injection of pyrogens was used to inhibit all three NOSs ( N G-monomethyl-d-arginine acetate salt and corn oil were used as control). In normal male C57BL/6J mice, l-NMMA inhibited the LPS-induced fever by ∼60%, whereas it augmented fever by ∼65% in mice injected with turpentine. Challenging the respective NOS knockout mice with LPS and with l-NMMA revealed that inducible NOS and neuronal NOS isoforms are responsible for the induction of fever to LPS, whereas endothelial NOS (eNOS) is not involved. In contrast, none of the NOS isoforms appeared to trigger fever to turpentine. Inhibition of eNOS, however, exacerbates fever in mice treated with l-NMMA and turpentine, indicating that eNOS participates in the antipyretic mechanism. These data support the hypothesis that nitric oxide is a regulator of fever. Its action differs, however, depending on the pyrogen used and the NOS isoform.


2021 ◽  
Author(s):  
Tomoko Tanaka ◽  
Shinobu Hirai ◽  
Hiroyuki Manabe ◽  
Kentaro Endo ◽  
Hiroko Shimbo ◽  
...  

Aging involves a decline in physiology which is a natural event in all living organisms. An accumulation of DNA damage contributes to the progression of aging. DNA is continually damaged by exogenous sources and endogenous sources. If the DNA repair pathway operates normally, DNA damage is not life threatening. However, impairments of the DNA repair pathway may result in an accumulation of DNA damage, which has a harmful effect on health and causes an onset of pathology. RP58, a zinc-finger transcriptional repressor, plays a critical role in cerebral cortex formation. Recently, it has been reported that the expression level of RP58 decreases in the aged human cortex. Furthermore, the role of RP58 in DNA damage is inferred by the involvement of DNMT3, which acts as a co-repressor for RP58, in DNA damage. Therefore, RP58 may play a crucial role in the DNA damage associated with aging. In the present study, we investigated the role of RP58 in aging. We used RP58 hetero-knockout and wild-type mice in adolescence, adulthood, or old age. We performed immunohistochemistry to determine whether microglia and DNA damage markers responded to the decline in RP58 levels. Furthermore, we performed an object location test to measure cognitive function, which decline with age. We found that the wild-type mice showed an increase in single-stranded DNA and gamma-H2AX foci. These results indicate an increase in DNA damage or dysfunction of DNA repair mechanisms in the hippocampus as age-related changes. Furthermore, we found that, with advancing age, both the wild-type and hetero-knockout mice showed an impairment of spatial memory for the object and increase in reactive microglia in the hippocampus. However, the RP58 hetero-knockout mice showed these symptoms earlier than the wild-type mice did. These results suggest that a decline in RP58 level may lead to the progression of aging.


2020 ◽  
Author(s):  
Benjamin Ng ◽  
Anissa A. Widjaja ◽  
Sivakumar Viswanathan ◽  
Jinrui Dong ◽  
Sonia P. Chothani ◽  
...  

AbstractGenetic loss of function (LOF) in IL11RA infers IL11 signaling as important for fertility, fibrosis, inflammation and craniosynostosis. The impact of genetic LOF in IL11 has not been characterized. We generated IL11-knockout (Il11-/-) mice, which are born in normal Mendelian ratios, have normal hematological profiles and are protected from bleomycin-induced lung fibro-inflammation. Noticeably, baseline IL6 levels in the lungs of Il11-/- mice are lower than those of wild-type mice and are not induced by bleomycin damage, placing IL11 upstream of IL6. Lung fibroblasts from Il11-/- mice are resistant to pro-fibrotic stimulation and show evidence of reduced autocrine IL11 activity. Il11-/- female mice are infertile. Unlike Il11ra1-/- mice, Il11-/- mice do not have a craniosynostosis-like phenotype and exhibit mildly reduced body weights. These data highlight similarities and differences between LOF in IL11 or IL11RA while establishing further the role of IL11 signaling in fibrosis and stromal inflammation.


2007 ◽  
Vol 293 (3) ◽  
pp. R1239-R1246 ◽  
Author(s):  
Dong Sun ◽  
Changdong Yan ◽  
Azita Jacobson ◽  
Houli Jiang ◽  
Mairead A. Carroll ◽  
...  

We studied the roles of estrogen receptors (ER) and aromatase in the mediation of flow-induced dilation (FID) in isolated arteries of male ERα-knockout (ERα-KO) and wild-type (WT) mice. FID was comparable between gracilis arteries of WT and ERα-KO mice. In WT arteries, inhibition of NO and prostaglandins eliminated FID. In ERα-KO arteries, Nω-nitro-l-arginine methyl ester (l-NAME) inhibited FID by ∼26%, whereas indomethacin inhibited dilations by ∼50%. The remaining portion of the dilation was abolished by additional administration of 6-(2-proparglyoxyphenyl)hexanoic acid (PPOH) or iberiotoxin, inhibitors of epoxyeicosatrienoic acid (EET) synthesis and large-conductance potassium channels, respectively. By using an electrophysiological technique, we found that, in the presence of 10 dyne/cm2 shear stress, perfusate passing through donor vessels isolated from gracilis muscle of ERα-KO mice subjected to l-NAME and indomethacin elicited smooth muscle hyperpolarization and a dilator response of endothelium-denuded detector vessels. These responses were prevented by the presence of iberiotoxin in detector or PPOH in donor vessels. Gas chromatography-mass spectrometry (GC-MS) analysis indicated a significant increase in arterial production of EETs in ERα-KO compared with WT mice. Western blot analysis showed a significantly reduced endothelial nitric oxide synthase expression but enhanced expressions of aromatase and ERβ in ERα-KO arteries. Treatment of ERα-KO arteries with specific aromatase short-interfering RNA for 72 h, knocked down the aromatase mRNA and protein associated with elimination of EET-mediation of FID. Thus, FID in male ERα-KO arteries is maintained via an endothelium-derived hyperpolarizing factor/EET-mediated mechanism compensating for reduced NO mediation due, at least in part, to estrogen aromatized from testosterone.


Sign in / Sign up

Export Citation Format

Share Document