scholarly journals The effect of caster wheel diameter and mass distribution on drag forces in manual wheelchairs

2016 ◽  
Vol 53 (6) ◽  
pp. 893-900 ◽  
Author(s):  
Rene Zepeda ◽  
Franco Chan ◽  
Bonita Sawatzky
1984 ◽  
Vol 75 ◽  
pp. 599-602
Author(s):  
T.V. Johnson ◽  
G.E. Morfill ◽  
E. Grun

A number of lines of evidence suggest that the particles making up the E-ring are small, on the order of a few microns or less in size (Terrile and Tokunaga, 1980, BAAS; Pang et al., 1982 Saturn meeting; Tucson, AZ). This suggests that a variety of electromagnetic and plasma affects may be important in considering the history of such particles. We have shown (Morfill et al., 1982, J. Geophys. Res., in press) that plasma drags forces from the corotating plasma will rapidly evolve E-ring particle orbits to increasing distance from Saturn until a point is reached where radiation drag forces acting to decrease orbital radius balance this outward acceleration. This occurs at approximately Rhea's orbit, although the exact value is subject to many uncertainties. The time scale for plasma drag to move particles from Enceladus' orbit to the outer E-ring is ~104yr. A variety of effects also act to remove particles, primarily sputtering by both high energy charged particles (Cheng et al., 1982, J. Geophys. Res., in press) and corotating plasma (Morfill et al., 1982). The time scale for sputtering away one micron particles is also short, 102 - 10 yrs. Thus the detailed particle density profile in the E-ring is set by a competition between orbit evolution and particle removal. The high density region near Enceladus' orbit may result from the sputtering yeild of corotating ions being less than unity at this radius (e.g. Eviatar et al., 1982, Saturn meeting). In any case, an active source of E-ring material is required if the feature is not very ephemeral - Enceladus itself, with its geologically recent surface, appears still to be the best candidate for the ultimate source of E-ring material.


1984 ◽  
Vol 75 ◽  
pp. 597
Author(s):  
E. Grün ◽  
G.E. Morfill ◽  
T.V. Johnson ◽  
G.H. Schwehm

ABSTRACTSaturn's broad E ring, the narrow G ring and the structured and apparently time variable F ring(s), contain many micron and sub-micron sized particles, which make up the “visible” component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. It is suggested that the extent of the E ring and the braided, kinky structure of certain portions of the F rings as well as possible time variations are a result of plasma induced electromagnetic perturbations and drag forces. The G ring, in this scenario, requires some form of shepherding and should be akin to the F ring in structure. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 102to 104years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.


Author(s):  
S. Golladay

The theory of multiple scattering has been worked out by Groves and comparisons have been made between predicted and observed signals for thick specimens observed in a STEM under conditions where phase contrast effects are unimportant. Independent measurements of the collection efficiencies of the two STEM detectors, calculations of the ratio σe/σi = R, where σe, σi are the total cross sections for elastic and inelastic scattering respectively, and a model of the unknown mass distribution are needed for these comparisons. In this paper an extension of this work will be described which allows the determination of the required efficiencies, R, and the unknown mass distribution from the data without additional measurements or models. Essential to the analysis is the fact that in a STEM two or more signal measurements can be made simultaneously at each image point.


2006 ◽  
Vol 20 ◽  
pp. 269-270 ◽  
Author(s):  
L.E. Campusano ◽  
E.S. Cypriano ◽  
L. Jr. Sodré ◽  
J.-P. Kneib

2006 ◽  
Vol 133 ◽  
pp. 107-110 ◽  
Author(s):  
B. E. Blue ◽  
S. V. Weber ◽  
D. T. Woods ◽  
M. J. Bono ◽  
S. N. Dixit ◽  
...  

2019 ◽  
pp. 90-111 ◽  
Author(s):  
Natalia S. Pavlova ◽  
Andrey Е. Shastitko

The article deals with the problem of determining market boundaries for antitrust law enforcement in the field of telecommunications. An empirical approach has been proposed for determining the product boundaries of the market in the area of mass distribution of messages, taking into account the comparative characteristics of the types and methods of notification (informing) of end users; the possibilities of switching from one way of informing to another, including the evolution of such opportunities under the influence of technological changes; switching between different notification methods. Based on the use of surveys of customers of sending SMS messages, it is shown that the product boundaries should include not only sending messages via SMS, but also e-mail, instant messengers, Push notifications and voice information. The paper illustrates the possibilities of applying the method of critical loss analysis to determining the boundaries of markets based on a mixture of surveys and economic modeling.


Author(s):  
Jalusa Maria da Silva Ferrari ◽  
Luciano Noleto ◽  
jhon goulart ◽  
Fábio Kayser

Sign in / Sign up

Export Citation Format

Share Document