scholarly journals The effects of fixational eye movements on population responses in V1.

2019 ◽  
Vol 12 (7) ◽  
Author(s):  
Hamutal Slovin

Video stream: https://vimeo.com/362367119 During visual fixation, the eyes make small and fast movements known as microsaccades (MSs). The effects of MSs on neural activity in the visual cortex are not well understood. Utilizing voltage-sensitive dye imaging, we imaged the spatiotemporal patterns of neuronal responses induced by MSs in early visual cortices of behaving monkeys. Our results reveal a continuous “visual instability” during fixation: while the visual stimulus moves over the retina with each MS, the neuronal activity in V1 ‘hops’ within the retinotopic map, as dictated by the MS parameters. Neuronal modulations induced by MSs are characterized by neural suppression followed by neural enhancement and increased synchronization. The suppressed activity may underlie the suppressed perception during MSs whereas the late enhancement may facilitate the processing of new incoming image information. Moreover, the instability induced by MSs applies also to neural correlates of visual perception processes such as figure-ground (FG) segregation, which appear to develop faster after fixational saccades.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Talora L. Martin ◽  
Jordan Murray ◽  
Kiran Garg ◽  
Charles Gallagher ◽  
Aasef G. Shaikh ◽  
...  

AbstractWe evaluated the effects of strabismus repair on fixational eye movements (FEMs) and stereopsis recovery in patients with fusion maldevelopment nystagmus (FMN) and patients without nystagmus. Twenty-one patients with strabismus, twelve with FMN and nine without nystagmus, were tested before and after strabismus repair. Eye-movements were recorded during a gaze-holding task under monocular viewing conditions. Fast (fixational saccades and quick phases of nystagmus) and slow (inter-saccadic drifts and slow phases of nystagmus) FEMs and bivariate contour ellipse area (BCEA) were analyzed in the viewing and non-viewing eye. Strabismus repair improved the angle of strabismus in subjects with and without FMN, however patients without nystagmus were more likely to have improvement in stereoacuity. The fixational saccade amplitudes and intersaccadic drift velocities in both eyes decreased after strabismus repair in subjects without nystagmus. The slow phase velocities were higher in patients with FMN compared to inter-saccadic drifts in patients without nystagmus. There was no change in the BCEA after surgery in either group. In patients without nystagmus, the improvement of the binocular function (stereopsis), as well as decreased fixational saccade amplitude and intersaccadic drift velocity, could be due, at least partially, to central adaptive mechanisms rendered possible by surgical realignment of the eyes. The absence of improvement in patients with FMN post strabismus repair likely suggests the lack of such adaptive mechanisms in patients with early onset infantile strabismus. Assessment of fixation eye movement characteristics can be a useful tool to predict functional improvement post strabismus repair.


2014 ◽  
Vol 369 (1641) ◽  
pp. 20130211 ◽  
Author(s):  
Randolph Blake ◽  
Jan Brascamp ◽  
David J. Heeger

This essay critically examines the extent to which binocular rivalry can provide important clues about the neural correlates of conscious visual perception. Our ideas are presented within the framework of four questions about the use of rivalry for this purpose: (i) what constitutes an adequate comparison condition for gauging rivalry's impact on awareness, (ii) how can one distinguish abolished awareness from inattention, (iii) when one obtains unequivocal evidence for a causal link between a fluctuating measure of neural activity and fluctuating perceptual states during rivalry, will it generalize to other stimulus conditions and perceptual phenomena and (iv) does such evidence necessarily indicate that this neural activity constitutes a neural correlate of consciousness? While arriving at sceptical answers to these four questions, the essay nonetheless offers some ideas about how a more nuanced utilization of binocular rivalry may still provide fundamental insights about neural dynamics, and glimpses of at least some of the ingredients comprising neural correlates of consciousness, including those involved in perceptual decision-making.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256791
Author(s):  
Daichi Konno ◽  
Shinji Nishimoto ◽  
Takafumi Suzuki ◽  
Yuji Ikegaya ◽  
Nobuyoshi Matsumoto

The brain continuously produces internal activity in the absence of afferently salient sensory input. Spontaneous neural activity is intrinsically defined by circuit structures and associated with the mode of information processing and behavioral responses. However, the spatiotemporal dynamics of spontaneous activity in the visual cortices of behaving animals remain almost elusive. Using a custom-made electrode array, we recorded 32-site electrocorticograms in the primary and secondary visual cortex of freely behaving rats and determined the propagation patterns of spontaneous neural activity. Nonlinear dimensionality reduction and unsupervised clustering revealed multiple discrete states of the activity patterns. The activity remained stable in one state and suddenly jumped to another state. The diversity and dynamics of the internally switching cortical states would imply flexibility of neural responses to various external inputs.


2021 ◽  
Author(s):  
Baiwei Liu ◽  
Anna C Nobre ◽  
Freek van Ede

Covert spatial attention is associated with spatially specific modulation of neural activity as well as with directional biases in fixational eye-movements known as microsaccades. Recently, this link has been suggested to be obligatory, such that modulation of neural activity by covert spatial attention occurs only when paired with microsaccades toward the attended location. Here we revisited this link between microsaccades and neural modulation by covert spatial attention in humans. We investigated spatial modulation of 8-12 Hz EEG alpha activity and microsaccades in a context with no incentive for overt gaze behaviour: when attention is directed internally within the spatial layout of visual working memory. In line with a common attentional origin, we show that spatial modulations of alpha activity and microsaccades co-vary: alpha lateralisation is stronger in trials with microsaccades toward compared to away from the memorised location of the to-be-attended item and occurs earlier in trials with earlier microsaccades toward this item. Critically, however, trials without attention-driven microsaccades nevertheless showed clear spatial modulation of alpha activity - comparable to the neural modulation observed in trials with attention-driven microsaccades. Thus, directional biases in microsaccades are correlated with neural signatures of covert spatial attention, but they are not a prerequisite for neural modulation by covert spatial attention to be manifest.


2020 ◽  
Author(s):  
Chisa Ota ◽  
Tamami Nakano

AbstractBeauty filters, while often employed for retouching photos to appear more attractive on social media, when used in excess cause images to give a distorted impression. The neural mechanisms underlying this change in facial attractiveness according to beauty retouching level remain unknown. The present study used functional magnetic resonance imaging in women as they viewed photos of their own face or unknown faces that had been retouched at three levels: no, mild, and extreme. The activity in the nucleus accumbens (NA) exhibited a positive correlation with facial attractiveness, whereas amygdala activity showed a negative correlation with attractiveness. Even though the participants rated others’ faces as more attractive than their own, the NA showed increased activity only for their mildly retouched own face and the amygdala exhibited greater activation in the others’ faces condition than the own face condition. Moreover, amygdala activity was greater for extremely retouched faces than for unretouched or mildly retouched faces for both conditions. Frontotemporal and cortical midline areas showed greater activation for one’s own than others’ faces, but such self-related activation was absent when extremely retouched. These results suggest that neural activity dynamically switches between the NA and amygdala according to perceived attractiveness of one’s face.


2015 ◽  
Vol 27 (4) ◽  
pp. 832-841 ◽  
Author(s):  
Amanda K. Robinson ◽  
Judith Reinhard ◽  
Jason B. Mattingley

Sensory information is initially registered within anatomically and functionally segregated brain networks but is also integrated across modalities in higher cortical areas. Although considerable research has focused on uncovering the neural correlates of multisensory integration for the modalities of vision, audition, and touch, much less attention has been devoted to understanding interactions between vision and olfaction in humans. In this study, we asked how odors affect neural activity evoked by images of familiar visual objects associated with characteristic smells. We employed scalp-recorded EEG to measure visual ERPs evoked by briefly presented pictures of familiar objects, such as an orange, mint leaves, or a rose. During presentation of each visual stimulus, participants inhaled either a matching odor, a nonmatching odor, or plain air. The N1 component of the visual ERP was significantly enhanced for matching odors in women, but not in men. This is consistent with evidence that women are superior in detecting, discriminating, and identifying odors and that they have a higher gray matter concentration in olfactory areas of the OFC. We conclude that early visual processing is influenced by olfactory cues because of associations between odors and the objects that emit them, and that these associations are stronger in women than in men.


2013 ◽  
Vol 25 (1) ◽  
pp. 87-108 ◽  
Author(s):  
Alisha C. Holland ◽  
Elizabeth A. Kensinger

We used fMRI to investigate the neural processes engaged as individuals down- and up-regulated the emotions associated with negative autobiographical memories (AMs) using cognitive reappraisal strategies. Our analyses examined neural activity during three separate phases, as participants (a) viewed a reappraisal instruction (i.e., Decrease, Increase, Maintain), (b) searched for an AM referenced by a self-generated cue, and (c) elaborated upon the details of the AM being held in mind. Decreasing emotional intensity primarily engaged activity in regions previously implicated in cognitive control (e.g., dorsal and ventral lateral pFC), emotion generation and processing (e.g., amygdala, insula), and visual imagery (e.g., precuneus) as participants searched for and retrieved events. In contrast, increasing emotional intensity engaged similar regions during the instruction phase (i.e., before a memory cue was presented) and again as individuals later elaborated upon the details of the events they had recalled. These findings confirm that reappraisal can modulate neural activity during the recall of personally relevant events, although the time course of this modulation appears to depend on whether individuals are attempting to down- or up-regulate their emotions.


2021 ◽  
Author(s):  
Prasakti Tenri Fanyiwi ◽  
Beshoy Agayby ◽  
Ricardo Kienitz ◽  
Marcus Haag ◽  
Michael C. Schmid

AbstractA growing body of psychophysical research reports theta (3-8 Hz) rhythmic fluctuations in visual perception that are often attributed to an attentional sampling mechanism arising from theta rhythmic neural activity in mid- to high-level cortical association areas. However, it remains unclear to what extent such neuronal theta oscillations might already emerge at early sensory cortex like the primary visual cortex (V1), e.g. from the stimulus filter properties of neurons. To address this question, we recorded multi-unit neural activity from V1 of two macaque monkeys viewing a static visual stimulus with variable sizes, orientations and contrasts. We found that among the visually responsive electrode sites, more than 50 % showed a spectral peak at theta frequencies. Theta power varied with varying basic stimulus properties. Within each of these stimulus property domains (e.g. size), there was usually a single stimulus value that induced the strongest theta activity. In addition to these variations in theta power, the peak frequency of theta oscillations increased with increasing stimulus size and also changed depending on the stimulus position in the visual field. Further analysis confirmed that this neural theta rhythm was indeed stimulus-induced and did not arise from small fixational eye movements (microsaccades). When the monkeys performed a detection task of a target embedded in a theta-generating visual stimulus, reaction times also tended to fluctuate at the same theta frequency as the one observed in the neural activity. The present study shows that a highly stimulus-dependent neuronal theta oscillation can be elicited in V1 that appears to influence the temporal dynamics of visual perception.


Author(s):  
Shany Nivinsky Margalit ◽  
Neta Gery Golomb ◽  
Omer Tsur ◽  
Aeyal Raz ◽  
Hamutal Slovin

AbstractAnesthetic drugs are widely used in medicine and research to mediate loss of consciousness (LOC). Despite the vast use of anesthesia, how LOC affects cortical sensory processing and the underlying neural circuitry, is not well understood. We measured neuronal population activity in the visual cortices of awake and isoflurane anesthetized mice and compared the visually evoked responses under different levels of consciousness. We used voltage-sensitive dye imaging (VSDI) to characterize the temporal and spatial properties of cortical responses to visual stimuli over a range of states from wakefulness to deep anesthesia. VSDI enabled measuring the neuronal population responses at high spatial (meso-scale) and temporal resolution from several visual regions (V1, extrastiate-lateral (ESL) and extrastiate-medial (ESM)) simultaneously. We found that isoflurane has multiple effects on the population evoked response that augmented with anesthetic depth, where the largest changes occurred at LOC. Isoflurane reduced the response amplitude and prolonged the latency of response in all areas. In addition, the intra-areal spatial spread of the visually evoked activity decreased. During visual stimulation, intra-areal and inter-areal correlation between neuronal populations decreased with increasing doses of isoflurane. Finally, while in V1 the majority of changes occurred at higher doses of isoflurane, higher visual areas showed marked changes at lower doses of isoflurane. In conclusion, our results demonstrate a reverse hierarchy shutdown of the visual cortices regions: low-dose isoflurane diminishes the visually evoked activity in higher visual areas before lower order areas and cause a reduction in inter-areal connectivity leading to a disconnected network.


Sign in / Sign up

Export Citation Format

Share Document