scholarly journals INTERACTION OF HYDROGEN IMPURITY WITH NANOCRYSTALLINE PALLADIUM AND NICKEL

2018 ◽  
Vol 61 (8) ◽  
pp. 631-637
Author(s):  
G. M. Poletaev ◽  
I. V. Zorya ◽  
R. Y. Rakitin

The interaction of hydrogen atoms with nanocrystalline palladium and nickel in the work was studied by the molecular dynamics method. The nanocrystalline structure of palladium and nickel was created in the model by crystallization from the liquid state at the presence of several specially introduced crystalline embryos. After solidification, the calculation blocks, in addition to the crystalline phase, contained grain boundaries and triple junctions of grain boundaries. The interactions of metal atoms with each other were described by the multi-particle Cleri-Rosato potential constructed in the framework of the tight-binding model. Morse potentials were used to describe the interactions of hydrogen atoms with metal atoms and with each other. The parameters of Morse potentials were calculated from the experimental data of theabsorption energy, the activation energy of the above-barrier diffusion of hydrogen in a metal (at normal and high temperatures), the binding energy with a vacancy, dilatation. According to the results obtained in the present work, at a high concentration of hydrogen (the concentration of 10% from the metal atoms was considered), the hydrogen atoms combine into aggregates, which are formed predominantly near the surface of the metal. The aggregates contained, as a rule, several dozen hydrogen atoms and had low diffusion activity. The binding energy of hydrogen atoms with these aggregates was greater than with the metal crystal lattice or grain boundaries in it. In palladium, hydrogen aggregates were formed farther from the surface than in nickel. Apparently, this is due not so much to the relatively low energy of hydrogen absorption by palladium (–0.1 eV) in comparison with nickel (0.16 eV), but rather to the difference in lattice parameters of the metals under consideration: 3.89 Å for Pd and 3.524 Å for Ni. For the same reason, conspicuously, hydrogen aggregates in a pure crystal lattice were more often observed in Pd than in Ni. In Ni, aggregates, as a rule, were formed in defect areas containing an excess free volume: near the free surface, in grain boundaries and in triple junctions.

1997 ◽  
Vol 491 ◽  
Author(s):  
F. Cleri ◽  
P. Keblinski ◽  
L. Colombo ◽  
S. R. Phillpot ◽  
D. Wolf

ABSTRACTTight-binding molecular dynamics simulations of typical high-energy grain boundaries in silicon show that the atomic structure of the interface in thermodynamic equilibrium is similar to that of bulk amorphous silicon and contains coordination defects. The corresponding electronic structure is also amorphous-like, displaying extra states in the forbidden gap mainly localized around the coordination defects, where large changes in the bond-hybridization character are observed. It is proposed that such coordination defects in disordered high-energy grain boundaries are responsible for the experimentally observed gap states in polycrystalline Si.


Author(s):  
Eunan J. McEniry ◽  
Tilmann Hickel ◽  
Jörg Neugebauer

The behaviour of hydrogen at structural defects such as grain boundaries plays a critical role in the phenomenon of hydrogen embrittlement. However, characterization of the energetics and diffusion of hydrogen in the vicinity of such extended defects using conventional ab initio techniques is challenging due to the relatively large system sizes required when dealing with realistic grain boundary geometries. In order to be able to access the required system sizes, as well as high-throughput testing of a large number of configurations, while remaining within a quantum-mechanical framework, an environmental tight-binding model for the iron–hydrogen system has been developed. The resulting model is applied to study the behaviour of hydrogen at a class of low-energy {110}-terminated twist grain boundaries in α -Fe. We find that, for particular Σ values within the coincidence site lattice description, the atomic geometry at the interface plane provides extremely favourable trap sites for H, which also possess high escape barriers for diffusion. By contrast, via simulated tensile testing, weakly trapped hydrogen at the interface plane of the bulk-like Σ3 boundary acts as a ‘glue’ for the boundary, increasing both the energetic barrier and the elongation to rupture. This article is part of the themed issue ‘The challenges of hydrogen and metals’.


2020 ◽  
Vol 62 (12) ◽  
pp. 930-935
Author(s):  
G. M. Poletaev ◽  
I. V. Zorya ◽  
R. Yu. Rakitin ◽  
M. D. Starostenkov

Effect of carbon and oxygen impurity atoms on diffusion along the tilt grain boundaries with <100> and <111> misorientation axis in metals with FCC lattice was studied by mean of molecular dynamics method. Ni, Ag, and Al were considered as metals. Interactions of metal atoms with each other were described by many-particle Clery-Rosato potentials constructed within the framework of tight binding model. To describe interactions of atoms of light elements impurities with metal atoms and atoms of impurities with each other, Morse pair potentials were used. According to obtained results, impurities in most cases lead to an increase in self-diffusion coefficient along the grain boundaries, which is caused by deformation of crystal lattice near the impurity atoms. Therefore, additional distortions and free volume are formed along the boundaries. It is more expressed for carbon impurities. Moreover, with an increase in concentration of carbon in the metal, an increase in coefficient of grain-boundary self-diffusion was observed first, and then a decrease followed. This behavior is explained by formation of aggregates of carbon atoms at grain boundary, which leads to partial blocking of the boundary. Oxygen atoms had smaller effect on diffusion along the grain boundaries, which is apparently explained by absence of a tendency to form aggregates and lesser deformation of crystal lattice around impurity. The greatest effect of impurities on self-diffusion along the grain boundaries among the examined metals was observed for nickel. Nickel has the smallest lattice parameter, impurity atoms deform its lattice around itself more than aluminum and silver, and therefore they create relatively more lattice distortions in it and additional free volume along the grain boundaries, which lead to an increase in diffusion permeability. Diffusion coefficients along the high-angle boundaries with misorientation angle of 30° turned out to be approximately two times higher than along low-angle boundaries with a misorientation angle of 7°. Diffusion along the <100> grain boundaries flowed more intensively than along the <111> boundaries.


2019 ◽  
Vol 61 (12) ◽  
pp. 974-979
Author(s):  
G. M. Poletaev ◽  
I. V. Zorya ◽  
R. Y. Rakitin ◽  
D. V. Kokhanenko ◽  
M. D. Starostenkov

Effect of deformation along various directions against migrating  boundary on migration rate of edge boundaries with <100> and <111>  misorientation  axes  in  nickel  was  studied  by  means  of  molecular  dynamics  method.  Grain  boundaries  were  created  in  U-shaped  model.  Force of boundary surface tension, arising from the boundary intension  to  minimize  its  energy,  was  the  reason  of  directed  movement  of  the  boundary toward its area decrease. The force provoking migration and  migration rate of the boundary remained constant throughout the entire  movement  of  the  boundary,  gradually  decreasing  towards  the  end  of  computer  experiment,  which  made  it  possible  to  measure  migration  rate quite simply. Effect of uniaxial deformation along the X, Y, Z axes  on migration rate of the boundaries was considered. Uniaxial deformation in the model was set at beginning of the computer experiment by  changing  corresponding  interatomic  distances  along  one  of  the  axes.  Interactions of nickel atoms with each other were described with the aid  of Cleri Rosato many-particle potential constructed in the framework  of  tight  binding  model.  For  the  boundaries  considered,  dependences  of  migration  rate  on  misorientation  angle  at  temperature  of  1700 K  were obtained. It is shown that the high-angle <111> and <100> edge  boundaries migrate approximately at the same rate, while mobility of  low-angle  boundaries  differs  significantly:  low-angle  <111>  boundaries migrate about twice as fast as the <100> boundaries. It was found  that in almost all cases, both at elastic compression and tension deformation, migration rate of considered boundaries was slowed down. An  exception was the case of deformation along the <111> edge boundary  axis. When compressing along the edge axis, <111> boundary migrated faster, while on the contrary, it was slower at tension. The obtained  results testify to the fact that migration of edge boundaries is not due to  diffusion processes, such as climbing of dislocations, single migrations of  atoms,  but,  apparently,  by  collective  atomic  permutations:  shifts, slides and splittings of grain boundary dislocations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Luo ◽  
Yuma Nakamura ◽  
Jinseon Park ◽  
Mina Yoon

AbstractRecent experiments identified Co3Sn2S2 as the first magnetic Weyl semimetal (MWSM). Using first-principles calculation with a global optimization approach, we explore the structural stabilities and topological electronic properties of cobalt (Co)-based shandite and alloys, Co3MM’X2 (M/M’ = Ge, Sn, Pb, X = S, Se, Te), and identify stable structures with different Weyl phases. Using a tight-binding model, for the first time, we reveal that the physical origin of the nodal lines of a Co-based shandite structure is the interlayer coupling between Co atoms in different Kagome layers, while the number of Weyl points and their types are mainly governed by the interaction between Co and the metal atoms, Sn, Ge, and Pb. The Co3SnPbS2 alloy exhibits two distinguished topological phases, depending on the relative positions of the Sn and Pb atoms: a three-dimensional quantum anomalous Hall metal, and a MWSM phase with anomalous Hall conductivity (~1290 Ω−1 cm−1) that is larger than that of Co2Sn2S2. Our work reveals the physical mechanism of the origination of Weyl fermions in Co-based shandite structures and proposes topological quantum states with high thermal stability.


2021 ◽  
Vol 7 (2) ◽  
pp. eabd4248
Author(s):  
Fengmiao Li ◽  
Yuting Zou ◽  
Myung-Geun Han ◽  
Kateryna Foyevtsova ◽  
Hyungki Shin ◽  
...  

Titanium monoxide (TiO), an important member of the rock salt 3d transition-metal monoxides, has not been studied in the stoichiometric single-crystal form. It has been challenging to prepare stoichiometric TiO due to the highly reactive Ti2+. We adapt a closely lattice-matched MgO(001) substrate and report the successful growth of single-crystalline TiO(001) film using molecular beam epitaxy. This enables a first-time study of stoichiometric TiO thin films, showing that TiO is metal but in proximity to Mott insulating state. We observe a transition to the superconducting phase below 0.5 K close to that of Ti metal. Density functional theory (DFT) and a DFT-based tight-binding model demonstrate the extreme importance of direct Ti–Ti bonding in TiO, suggesting that similar superconductivity exists in TiO and Ti metal. Our work introduces the new concept that TiO behaves more similar to its metal counterpart, distinguishing it from other 3d transition-metal monoxides.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 253
Author(s):  
Yosang Jeong ◽  
Hoon Ryu

The non-equilibrium Green’s function (NEGF) is being utilized in the field of nanoscience to predict transport behaviors of electronic devices. This work explores how much performance improvement can be driven for quantum transport simulations with the aid of manycore computing, where the core numerical operation involves a recursive process of matrix multiplication. Major techniques adopted for performance enhancement are data restructuring, matrix tiling, thread scheduling, and offload computing, and we present technical details on how they are applied to optimize the performance of simulations in computing hardware, including Intel Xeon Phi Knights Landing (KNL) systems and NVIDIA general purpose graphic processing unit (GPU) devices. With a target structure of a silicon nanowire that consists of 100,000 atoms and is described with an atomistic tight-binding model, the effects of optimization techniques on the performance of simulations are rigorously tested in a KNL node equipped with two Quadro GV100 GPU devices, and we observe that computation is accelerated by a factor of up to ∼20 against the unoptimized case. The feasibility of handling large-scale workloads in a huge computing environment is also examined with nanowire simulations in a wide energy range, where good scalability is procured up to 2048 KNL nodes.


Sign in / Sign up

Export Citation Format

Share Document