scholarly journals Using the spark-plasma technique to produce the mullite-sialon-ZrB2 materials and their properties examination

Author(s):  
A. V. Hmelov

It was shown how the different sialon and ZrB2ratio in course of the spark-plasma sintering under the pressing load of 75 MPa at 1200‒1600 °C influences the phase composition, the Si3N4and Al2O3content in sialon, the microstructure and crystal phases grain size, the density rate and open porosity, the linear shrinkage and physical and mechanical properties, as well as the linear correlation between the elasticity modulus and ultimate compression strength of the mullite‒sialon‒ZrB2samples.

Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 846-849
Author(s):  
Elżbieta Bączek

Metal matrix composites were prepared by hot pressing (HP) and spark plasma sintering (SPS) techniques. Ball-milled ironbase powders were consolidated to near full density by these methods at 900°C. The physical and mechanical properties of the resulting composites were investigated. The specimens were tested for resistance to both 3-body and 2-body abrasion. The composites obtained by HP method (at 900°C/35 MPa) had higher density, hardness and resistance to abrasion than those obtained by SPS method.


JOM ◽  
2020 ◽  
Vol 72 (6) ◽  
pp. 2295-2304
Author(s):  
Mahmood Khan ◽  
Rafi Ud-Din ◽  
Abdul Wadood ◽  
Syed Wilayat Husain ◽  
Shahid Akhtar ◽  
...  

2015 ◽  
Vol 782 ◽  
pp. 113-118
Author(s):  
Ying Mei Teng ◽  
Zhao Hui Zhang ◽  
Zi Zhou Yuan

The bulk nanocrystalline (NC) aluminum (Al) 5083 was synthesized by spark plasma sintering (SPS) technique with low initial pressure of 1 MPa, high holding pressure of 300 MPa and holding time of 4 min at different sintering temperatures, using surface passivated nanopowders. The effect of sintering temperature on microstructure and mechanical properties of the bulk NC Al 5083 were investigated. Results indicate that the density, grain size, the hardness and the compressive strength of the bulk NC Al 5083 increase with an increase in sintering temperature. The mechanical properties of the material are greatly improved due to the fine grain size. The bulk NC Al 5083 sintered at 723 K has the highest micro-hardness of 2.37 GPa and the best compressive strength of 845 MPa.


2011 ◽  
Vol 690 ◽  
pp. 469-472 ◽  
Author(s):  
Genki Kikuchi ◽  
Hiroshi Izui

In this study, we focused on the effect of alloying elements (Fe, Mo, and Al) on the consolidation and mechanical properties of Ti compacts. The elemental blended powders is manufactured by spark plasma sintering. The effects of amount of alloying elements and sintering temperature on the relative density and tensile properties of Ti compacts were investigated. The addition of β-stabilizing elements (Fe and Mo) was found significantly improve the densification of Ti compacts, where the sintered density ratio of Ti-5 wt.% Mo specimen was higher than 99.9 %, and Ti-5 wt.% Fe specimen was higher than 99.0 %. On the other hand, addition of Al as α-stabilizing element showed the sintered density rate of Ti-5 wt.% Al specimen was higher than 99.9 %. The tensile property for sintered Ti-5 wt.% Mo specimens had the highest elongation of 16 %. It will be discussed the microstructures and tensile property of the compacts.


Author(s):  
Zheng-Yang Hu ◽  
Hai-Chun Peng ◽  
Zhao-Hui Zhang ◽  
Peng Song ◽  
Ming Chen ◽  
...  

Abstract A hybrid of TiB whiskers and TiC particles reinforced TC4 matrix composites were in-situ synthesized by spark plasma sintering (SPS) using a TC4-0.6wt.% B4C powder mixture at temperatures range from 550°C to 1150°C. The effect of sintering temperature on microstructure, grain size, mechanical properties and densification process of the (TiB+TiC)/ TC4 matrix composites were investigated. The composite sintered at 1050℃ has the highest tensile strength (1129.0 MPa), yield strength (1077.8MPa) and plasticity (7.1%). The aspect ratio of TiB whiskers increases almost linearly below 1050°C and its highest value is 33.2. The grain size of TiC increases with the increase of sintering temperature, and rapid growth occurs in the range of 850°C to 950°C. The composite sintered body appears four shrinkage stages before applying sintering pressure. The corresponding peak temperatures are 663℃, 758℃, 840℃ and 994℃, respectively.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1314
Author(s):  
Ikuho Nakahata ◽  
Yusuke Tsutsumi ◽  
Equo Kobayashi

Recent studies indicate that biodegradable magnesium alloys and composites are attracting a great deal of attention in orthopedic applications. In this study, magnesium–hydroxyapatite (Mg–HAP) composites with different compositions and grain size were fabricated by a spark plasma sintering (SPS) method. Their mechanical properties and corrosion behavior in a pseudo-physiological environment were investigated by pH measurements and inductivity coupled plasma (ICP) elemental analysis after an immersion test using Hanks’ solution. The results clearly showed that the addition of HAP improved both the mechanical properties and corrosion resistance. The results also indicated that the finer grain size improved most of the properties that are needed in a material for an orthopedic implant. Furthermore, the authors reveal that there is a strong correlation between the compressive strength and the porosity. In order to achieve the same compressive strength as human bone using these fabrication conditions, it is revealed that the porosity should be lower than 1.9%.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012021
Author(s):  
Tarik T. Issa ◽  
Noor Kadhum Abid ◽  
Mustafa Kadhum Abid

Abstract Kaolin and silica of 50 μm grain size were used in different weight percentage. Four combinations have been selected as green compacted bodies. Different sintering temperatures ranging from (1000 – 1400) °C were used to sintered all the combinations under static air. The sintered density, thermal conductivity compression strength and linear shrinkage were tested after sintering. The common behavior indicated that the improvement with its optimum results was found at the combination (Kaolin 20-SiO2 80) Wt. %, sintered at 1400 °C, for 3 hours under static air.


Mechanik ◽  
2019 ◽  
Vol 92 (2) ◽  
pp. 115-118
Author(s):  
Andrzej Nowakowski ◽  
Piotr Putyra ◽  
Tadeusz Krzywda

The paper presents the results of physical and mechanical properties of the and Si3N4 and SiC matrix ceramics with additives of good electrical conductivity carbides, nitrides and borides phases. The density, Young’s modulus, hardness HV1 and electrical conductivity of each material were investigated. Ceramic composite materials with the participation of the conductive phases have been produced using SPS (spark plasma sintering) method. Materials characterized by good electrical conductivity were shaped using EDM (electro discharge machining) method.


2012 ◽  
Vol 527 ◽  
pp. 32-37
Author(s):  
J. Grabis ◽  
Ints Šteins ◽  
Dz. Rašmane

TiN and TiN/TiBSubscript text2 nanoparticles with crystallite size of TiN in the range of 27–38 nm and TiBSubscript text2 in the range of 55–90 nm have been prepared by thermal plasma technique. The prepared nanoparticles and mechanical mixture of TiN with amorphous boron have been densified using spark plasma sintering and the microstructure and density of the samples were compared. The relative density of the samples with content of TiBSubscript text2 about 36 wt.% is in the range of 95.9–97.1% in dependence on the precursors. The higher relative density of the samples provided reactive sintering of TiN/B powder. The grain size of the composites in the range of 0.5–3 µm testified that spark plasma sintering intensified the grain growth in despite of the short sintering time.


Sign in / Sign up

Export Citation Format

Share Document