scholarly journals Influence of the sintering temperature on the microstructure, mechanical properties and densification characteristics of (TiB+TiC)/TC4 composite

Author(s):  
Zheng-Yang Hu ◽  
Hai-Chun Peng ◽  
Zhao-Hui Zhang ◽  
Peng Song ◽  
Ming Chen ◽  
...  

Abstract A hybrid of TiB whiskers and TiC particles reinforced TC4 matrix composites were in-situ synthesized by spark plasma sintering (SPS) using a TC4-0.6wt.% B4C powder mixture at temperatures range from 550°C to 1150°C. The effect of sintering temperature on microstructure, grain size, mechanical properties and densification process of the (TiB+TiC)/ TC4 matrix composites were investigated. The composite sintered at 1050℃ has the highest tensile strength (1129.0 MPa), yield strength (1077.8MPa) and plasticity (7.1%). The aspect ratio of TiB whiskers increases almost linearly below 1050°C and its highest value is 33.2. The grain size of TiC increases with the increase of sintering temperature, and rapid growth occurs in the range of 850°C to 950°C. The composite sintered body appears four shrinkage stages before applying sintering pressure. The corresponding peak temperatures are 663℃, 758℃, 840℃ and 994℃, respectively.

2014 ◽  
Vol 881-883 ◽  
pp. 923-926
Author(s):  
Xiang Bo Shen ◽  
Zhao Hui Zhang ◽  
Mao Sheng Cao ◽  
Fu Chi Wang

The in-situ synthesized TiB reinforced titanium matrix composites have been prepared by spark plasma sintering technique at 950–1250°C, using mixtures of 10wt% TiB2 and 90wt% Ti powders. The effects of the sintering temperature on the mechanical properties (Vickers microhardness, yield strength and Young`s modulus) of the composites were investigated. SEM was used to analyze the reaction process and the microstructure of the compacts synthesized at different sintering temperatures. The results indicated that the in situ synthesized TiB grow rapidly with increasing sintering temperature. The composite sintered at 1250°C have the highest relative density of 99.2%. However, the composite sintered at 950°C exhibits the best Vickers microhardness of 4.64GPa and yield strength of 989MPa, respectively.


2007 ◽  
Vol 554 ◽  
pp. 95-100 ◽  
Author(s):  
S. Kurama ◽  
Mathias Herrmann

At temperature above 1200°C, the thermal stability of α-SiAlON phases has been debated since 1992; however, it has been discussed if any α-SiAlON phase can be formed in Ce, La, Eu and Sr-doped SiAlON systems. In our previous studies it was shown that the use of Mg-Ce and Mg-Sr elements as dopants SiAlON compositions, in which all elements just have very low or no stability in the α-SiAlON structure, would promote the stability of Mg-Ce elements in the α- SiAlON phase [1, 2]. However, in Mg-Sr systems, it was obtained that Mg2+ is predominantly incorporated in α-SiAlON structure whereas Sr2+ mainly remains in the grain boundaries [2]. In this study, by applying spark plasma sintering (SPS) (at 1400-1700°C) and post-sintering thermal heat treatment (at 1500°C for 5 hrs and 1700°C for 2hrs) Mg or Mg-Sr doped SiAlON (50:50 mole ratios) ceramics were prepared. The results were compared with GPS sintered samples data. The effect of sintering temperature on densification process, phase transformation, microstructure and mechanical properties of samples were investigated. The results showed that by using SPS, Sr-Mg doped samples can be sintered at lower temperature (at 1600°C) than at GPS (at 1800°C) and it has no Sr-doped grain boundary phases.


2015 ◽  
Vol 782 ◽  
pp. 113-118
Author(s):  
Ying Mei Teng ◽  
Zhao Hui Zhang ◽  
Zi Zhou Yuan

The bulk nanocrystalline (NC) aluminum (Al) 5083 was synthesized by spark plasma sintering (SPS) technique with low initial pressure of 1 MPa, high holding pressure of 300 MPa and holding time of 4 min at different sintering temperatures, using surface passivated nanopowders. The effect of sintering temperature on microstructure and mechanical properties of the bulk NC Al 5083 were investigated. Results indicate that the density, grain size, the hardness and the compressive strength of the bulk NC Al 5083 increase with an increase in sintering temperature. The mechanical properties of the material are greatly improved due to the fine grain size. The bulk NC Al 5083 sintered at 723 K has the highest micro-hardness of 2.37 GPa and the best compressive strength of 845 MPa.


2007 ◽  
Vol 336-338 ◽  
pp. 1310-1312
Author(s):  
Hai Bo Feng ◽  
De Chang Jia ◽  
Yu Zhou ◽  
Qing Chang Meng

The in situ TiB whisker reinforced titanium matrix composites were prepared by mechanical alloying followed by spark plasma sintering. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to characterize the microstructure of the TiB whiskers. The effect of sintering temperature on morphologies of in situ TiB whiskers was evaluated. With the increase of spark plasma sintering temperature, the average diameter of in situ TiB whiskers increased. The in situ TiB whiskers exhibited a hexagonal shape with (100), (101) and (10 1 ) planes at the transverse section and a growth orientation of [010]TiB direction.


2005 ◽  
Vol 502 ◽  
pp. 189-194
Author(s):  
Yu Zhou ◽  
Hai Bo Feng ◽  
De Chang Jia

In situ synthesized TiB reinforced titanium matrix composites of Ti-B and Ti-TiB2 systems have been prepared by spark plasma sintering at 800-1200 °C under 20 MPa for 5 min. The effects of sintering temperature and reinforcement volume fraction on flexural strength, Young’s modulus and fracture toughness of the composites were investigated. The in situ synthesized TiB reinforcements are randomly and uniformly distributed in titanium matrix. The TiB whiskers are aligned along [010] direction, and the crystallographic planes of the TiB needles are always of the type (100), (101) and (10 1) . The parallel TiB were observed in β-Ti grains in both of the investigated composites. The in situ TiB needle is likely to grow along [010] direction which is parallel to [111] direction of cubic lattice of β-Ti phase.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2346
Author(s):  
Jian Liu ◽  
Min Wu ◽  
Jian Chen ◽  
Zibo Ye ◽  
Cheng Lin ◽  
...  

In-situ synthesis, microstructure, and mechanical properties of four TiB2-Reinforced Fe-Cr-Mn-Al Steel Matrix Composites have been researched in this work. The microstructure and phases of the prepared specimens have been characterized by using scanning electron microscopy (SEM), X-ray diffraction technique, and transmission electron microscopy (TEM). The sintered specimens consisted of Fe2AlCr, CrFeB-type boride, and TiB2. The mechanical properties, such as hardness and compression strength at room temperature (RT) and at elevated temperatures (600 °C and 800 °C) have been evaluated. The compressive strength and Vickers hardness of the sintered specimens increase with the volume fraction of TiB2 in the matrix, which are all much higher than those of the ex-situ TiB2/Fe-15Cr-20Mn-8Al composites and the reported TiB2/Fe-Cr composites with the same volume fraction of TiB2. The highest Vickers hardness and compressive strength at room temperature are 1213 ± 35 HV and 3500 ± 20 MPa, respectively. As the testing temperature increases to 600 °C, or even 800 °C, these composites still show relatively high compressive strength. Precipitation strengthening of CrFeB and in-situ synthesis of TiB2 as well as nanocrystalline microstructure produced by the combination of mechanical alloying (MA) and spark plasma sintering (SPS) can account for the high Vickers hardness and compressive strength.


2019 ◽  
Vol 960 ◽  
pp. 135-139
Author(s):  
Zheng Yang Hu ◽  
Zhao Hui Zhang ◽  
Qi Song ◽  
Shi Pan Yin ◽  
Hao Wang ◽  
...  

In this paper, TiB reinforced Ti-6Al-4V matrix composites were successfully fabricated using a spark plasma sintering, hot rolling and heat treating process. (Transformed β-Ti + secondary α-Ti) domains were formed in TiB/TMCs after heat treatment. The size of these domains increases from 2.5 μm to 4.6 μm with the increase of solution time. The aspect ratio of whiskers monotonously decreases along with the solution time extending. The highest ultimate tensile strength of 1332 MPa and yield-strength of 1315 MPa were achieved by (940 °C, 15min+ water-quenching+537 °C, 4h) TMC.


Sign in / Sign up

Export Citation Format

Share Document