scholarly journals Issues of Multi-Motor Electric Drive Dynamics through the Example of Converter Tilting Mechanism

2020 ◽  
Vol 5 (3) ◽  
pp. 253-265
Author(s):  
V. F. Borisenko ◽  
V. A. Sidorov ◽  
A. I. Zemlyansky

Many heavy machines and mechanisms of mining and metallurgical industry, for example, basic-oxygen converters (BOCs), are equipped with multi-motor electric drive. Reducing the influence of the disadvantages characteristic of a branched multi-connected system is possible by creating control systems based on mathematical models of the considered electromechanical systems (EMS). The full mathematical model takes into account the number of EMS motors, gear backlashes, elasticity of shafting, the effect of dissipative forces, etc. Disadvantage of this approach is complexity of such models, which leads to high computational costs and time expenditure for their implementation. To analyze dynamic processes arising under acceleration and deceleration conditions of the electromechanical system of the converter tilting mechanism, it is proposed to use a simplified equivalent simulation model, which would take into account changing the EMS natural oscillation frequency for any operation conditions based on process and design features. Based on the simulation model analysis, it was concluded that it is necessary to assess mechanical loads in the system by comparing their current and basis values, as well as taking into account the damping properties of the electric drive. To reduce dynamic loads, it is proposed to form a law of changing the control voltage using an intensity generator, which reduces the risks of occurrence of elastic moments, significantly exceeding those permissible for this class of mechanisms. The results of thermal and vibration diagnostics for assessing malfunctions of key units of the converter tilting mechanism, as well as assessing the system behavior based on the Matlab Simulink model with varying shafting elasticity and normalized gear backlashes, showed significant effect of the latters on the dynamic loads.

2020 ◽  
pp. 45-48
Author(s):  
S.I. Malafeev ◽  
A.A. Malafeeva ◽  
V.I. Konyashin

A correction method for regulating the mechatronic system of a «DUO-300» rolling mill with a direct current electric drive is considered. The results of the study of dynamic processes in the mechatronic system with the proposed correction are presented. Keywords rolling mill, mechatronic system, model, electric drive, engine, regulator, correction. [email protected]


2021 ◽  
Vol 1 (1) ◽  
pp. 40-49
Author(s):  
S. Rachev ◽  
K. Dimitrova ◽  
D. Koeva ◽  
L. Dimitrov

During the operation of electric induction motors used to drive passenger elevators, electro-mechanical transient processes occur, which can cause unacceptable dynamic loads and vibrations. In this regard, research is needed both at the design stage and for operating elevator systems to determine the arising impact currents and torques, in order to propose solutions for their limitation within pre-set limits. Paper deals with starting processes in a two-speed induction motor drive of a passenger elevator. The equations for the voltages of the induction motor are presented in relative units in a coordinate system rotating at a synchronous speed. The values have been obtained for the torques, the rotational frequencies and the currents when starting at a high speed and passing from high to low speed.


2020 ◽  
Vol 33 (109) ◽  
pp. 46-53
Author(s):  
E. Naydenko ◽  
◽  
D. Zahumennov

It is possible to create a control program for a two-mass system based on an industrial micro- controller. The software implements various control methods to reduce the dynamic loads in the kinematic elements during the transients. The methods of simulating the behavior of the mechanism in different condi- tions and time intervals is described, as well as demonstration of the system operation and registration of relevant data. Numerous studies have shown that mechanical vibrations in most cases adversely affect the operation of the electric drive, causing an increase in dynamic loads, which reduces the accuracy of the mechanism, the occurrence of mechanical vibrations that create a dangerous situation. In the transients, when the suspension point of the load moves with acceleration, there is a swing of the load relative to its equilibrium position. The aim of the work is to control the mechanism of horizontal movement by an indus- trial controller, which implements the reduction of loads in the kinematic transmissions during the transi- ents, increases the speed and dampens the oscillations of the suspended load. The task is to develop a control algorithm and demonstrate the possibility of implementing the necessary control laws of the industrial con- troller. The possibility of realization of a microcontroller control of the asynchronous electric drive of the translational movement mechanism with the suspended load is shown, the control algorithm providing re- duction of the dynamic loadings in the kinematic elements is developed, and at small values of a backlash it provides speed and damping of the fluctuations suspended on a flexible thread. The management program is implemented on the basis of the industrial controller. It is possible to demonstrate the operation of the sys- tem in real time, as well as, changing the scale of time, to investigate the dynamic loads arising in the kine- matic elements of the mechanism under different conditions and control methods.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3617
Author(s):  
Ding Wang ◽  
Yangwu Shen ◽  
Zhen Hu ◽  
Ting Cui ◽  
Xiaoming Yuan

Short-term voltage instability has a sensational effect once it occurs with massive loss of load, possibly area instability, and voltage collapse. This paper analyzes the short-term voltage instability caused by induction motor from the viewpoint of active and reactive power joint balancing. The analysis method is based on (1) the reactive power balancing between system supply and induction motor demand, and (2) the active power balancing between air-gap power and mechanical power, which is expressed by the region of rotor acceleration and deceleration in the Q-V plane. With the region of rotor acceleration and deceleration in the Q-V plane and the reactive power balancing, the movement direction of the operating point can be visually observed in the Q-V plane, thereby achieving a clear comprehension of physical properties behind the short-term voltage instability phenomenon. Furthermore, the instability mechanisms of two kinds of grid-connected induction motor operation conditions after a large disturbance are discussed to explain the basic theory of the analysis method and to provide examples of its application. Time-domain simulations are presented for a single-load infinite-bus system to validate the analyses.


2019 ◽  
Vol 134 ◽  
pp. 01012
Author(s):  
Denis Zolkin ◽  
Vadim Petrov

The paper deals with the problems of vibration damping and limiting dynamic loads in the electromechanical system of a belt conveyor by means of an adjustable electric drive. A conveying unit is represented as a three-mass ring system, which corresponds to a conveying unit with cinematically closed tape. The development of the structure of the control system for electric drives of belt conveyors with limited dynamic loads in elastic elements will reduce the dynamic loads on the belt and therefore the wear of the belts. Conditions of damping of oscillations in electromechanical system of belt conveyors are defined.


Author(s):  
Roger L. Wayson ◽  
John M. MacDonald ◽  
Ronald Eaglin ◽  
Barbara Wendling

Several models are available for predicting traffic noise levels. The FHWA-promulgated model, STAMINA 2.0, is the most widely used noise model in the United States and is used to model free-flow vehicular traffic. STAMINA 2.0 cannot directly model interrupted-flow traffic. Sound levels from interrupted-flow traffic can be approximated with STAMINA 2.0 using the method presented in NCHRP Report 311. This method is time-consuming and difficult to use. These limitations demonstrate the need for a traffic noise model that can model the acceleration and deceleration behavior of interrupted-flow traffic. The University of Central Florida has developed the American Automobile Manufacturers Association Community Noise Model (CNM). The CNM is a traffic simulation model that determines sound levels at receivers by modeling vehicles as discrete moving point sources. The vehicle energy is determined from acceleration, deceleration, idle, and cruise reference energy mean emission level curves. Sound energy attenuation is calculated from distance, ground absorption, and user input barriers. The model sums the energy at receivers from all vehicles and then calculates the Leq noise level at the receivers. It is demonstrated that the CNM predicts receiver Leq levels that are very close to STAMINA 2.0 results for constant-speed traffic. The CNM can also accurately predict sound levels at receivers located before and after intersections. In addition to the advantages of a real simulation model, the CNM is user friendly, allowing the user to place lanes and receivers using the mouse.


2017 ◽  
Vol 265 ◽  
pp. 1034-1039 ◽  
Author(s):  
Yu.B. Chechulin ◽  
Yu.A. Popov

For the newly proposed pneumohydraulic drive of workpiece return movement it is researched relations, analysis was carried out and recommendations of selecting values of the initial pressure in the pneumatic chamber, ensuring a rational ratio between the periods of acceleration and deceleration were obtained. A mathematical model and program were created for the calculation of the law of motion of the brake rod with floating piston device using the system variable throttling the flow of the working fluid along the movement in the brake chamber. Based on the developed model the numerical analysis is made to assess the impact of the inner surface of the brake axle box on the final rate of the brake piston, as well as the effect of the location and change in the area of additional throttling apertures therein on the trend values of the maximum braking acceleration of moving masses. An algorithm of determining the constants and variables control law of motion, minimizing the maximum values of dynamic loads per cycle movement of the workpiece is obtained. It is shown that the proposed framework of the rod system of the workpiece return movement in the working cage with a floating piston ensures reduce the moving masses and increases the rigidity of the movable rod. The calculated relations for the definition of effort mobile carriage prop, providing gapless its support with mechanism of feed limit, are obtained.


2021 ◽  
Vol 3 (134) ◽  
pp. 3-12
Author(s):  
Oleksii Hrechanyi ◽  
Tatiana Vasilchenko ◽  
Andrii Vlasov ◽  
Eduard Huz ◽  
Daria Tsimakhovych

Technological equipment of the metallurgical industry operates in difficult conditions in terms of dynamic loads. On the other hand, special requirements are imposed on their mechanisms - they must be reliable in operation and allow easy regulation, and in the event of breakdowns, allow quick replacement or repair of units and parts, and at the same time must meet the conditions for the accuracy of reproduction of the given technological opera-tions.In modern rolling shops, technological operations are carried out according to the continuous and continuous principles of creating new rolling equipment and the operation of complex machines requires the use of achievements in various fields of science and technology. Scissors, straightening machines, coilers, uncoilers, tilters, manipulators, pushers, conveyors are built into the flow technological working lines. And the performance of the technological line as a whole depends on the coordinated work of these mechanisms.The issues of dynamic loads from the point of view of the interaction of the rolling stands of the continuous broadband mill 1680 have been considered rather thoroughly, while the effect of changing the technological modes of rolling on the equipment of the current line, in particular the coiler, is not covered.In order to reduce equipment downtime due to emergency failures associated with an increase in dynamic loads from incorrectly selected technological modes, the task was set to analytically study the effect of a change in the rolling process on the dynamism coefficient using the example of roller coilers of rolling mills.To analyze the forced vibrations arising in the drive of the reel drum of the mill 1680, a two-mass torsion system is considered, to which external moments are applied - the moment of the technological resistance of the working body, reduced to the motor shaft, and the nominal torque of the electric motor.On the basis of the considered calculation scheme, a functional equation of motion was compiled through which the relationship between the change in the parameters of the technological process and the coefficient of dynamism was established.The solution of the functional equation of motion makes it possible to establish the value of the moment of elastic forces as a function of time, which is used in calculating the dynamic coefficient, which in turn characterizes the dynamic loads on the nodes of technological equipment. Its preliminary calculation allows avoiding emergencies associated with equipment failure in case of incorrect selection of the technological process modes.


Author(s):  
Salam Waley Shneen ◽  
Hashmia Sh. Dakheel ◽  
Zainab B. Abdulla

To design and implementation of variable and constant with no load for induction motor (IM) that is the goal in this work. This paper was including three parts, first the simulation model with no load for IM, Second the simulation model with constant load for IM, Third the simulation model with variable load for IM. In addition, this work includes comparative between two different controllers (PI and fuzzy logic control (FLC). The simulation results clearly the implementation of variable and constant with no load for IM. The simulation response of the system achieves better results when choosing to use type fuzzy-PI controller technique comparison with conventional PI controller and improve the performance of the system at different operation conditions.


Sign in / Sign up

Export Citation Format

Share Document