scholarly journals Formation of synthetic structures and textures of rocks when simulating in COMSOL Multiphysics

2021 ◽  
Vol 6 (2) ◽  
pp. 65-72
Author(s):  
A. S. Voznesensky ◽  
L. K. Kidima-Mbombi

Rock texture and structure play an important role in the formation of the rock physical properties, and also carry information about their genesis. The paper deals with the simulation of geometric shapes of various structures and textures of rocks by the finite-element method (FEM). It is carried out by programmed detailing of the element properties and their spatial location in the simulated object. When programming structures, it is also possible to set the physical properties of various parts of the model, grids, initial and boundary conditions, which can be changed in accordance with the scenarios for numerical experiments. In this study, on the basis of FEM, simulation of various structures and textures of rocks with inclusions and disruptions was implemented in COMSOL Multiphysics in conjunction with Matlab. Such structures are used to conduct computer generated simulations to determine physical properties of geomaterials and study the effect on them of agents of various physical nature. The building of several models was considered: a rock specimen with inclusions in the form of ellipses of equal dimensions with different orientations; a sandstone specimen containing inclusions with high modulus of elasticity in cement matrix when deforming; a limestone specimen with fractures filled with oil and saline water when determining its specific electrical resistance. As an example of a fractured structure analysis, the influence of the filler on the electrical resistance of the limestone specimen containing a system of thin elliptical predominantly horizontal fractures was considered. The change in the lines of current flow at different ratios between the matrix and the fracture filler conductivities and their effect on the effective (averaged) conductivity of the rock specimen was clearly demonstrated. The lower conductivity of the fracture filler leads to increasing the length and decreasing the cross-section of the current flow lines that, in turn, leads to significant decrease in the conductivity of the fractured rock specimen. The higher filler conductivity results in a slight increase in the conductivity of the fractured specimen compared to that of the homogeneous isotropic specimen. The resulting structures can be used for numerical experiments to study physical properties of rocks.

Alloy Digest ◽  
1970 ◽  
Vol 19 (6) ◽  

Abstract MONEL alloy 401 is a copper-nickel alloy with high electrical resistance and is used primarily in specialized electrical and electronic applications. It has a negligible temperature coefficient of electrical resistance and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming, heat treating, and machining. Filing Code: Cu-216. Producer or source: Huntington Alloy Products Division.


Alloy Digest ◽  
1996 ◽  
Vol 45 (6) ◽  

Abstract Magnifer 36K is a soft-magnetic nickel-iron alloy with 36% nickel. It has a saturation induction of 1.3 T and a rather high electrical resistance of 0.75 ohm mm2/m. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: FE-110. Producer or source: VDM Technologies Corporation.


Alloy Digest ◽  
1978 ◽  
Vol 27 (2) ◽  

Abstract DRIVER 180 ALLOY is a copper-nickel alloy for use where moderate electrical resistance is required. The number designation refers to its specific resistivity (180 ohms/cir mil/ft) which is combined with a fairly low coefficient of resistance (180 x 10^-6 per C). Its maximum recommended operating temperature is 1000 F. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-348. Producer or source: Wilbur B. Driver Company.


Alloy Digest ◽  
1977 ◽  
Vol 26 (11) ◽  

Abstract DRIVER 90 ALLOY is a copper-nickel alloy for use where only moderately low electrical resistance is required. The number designations refers to its specific resistivity (90 ohms/cir mil/ft) which is combined with a moderate coefficient of resistance. Its maximum recommended operating temperature is 800 F. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on forming and heat treating. Filing Code: Cu-343. Producer or source: Wilbur B. Driver Company.


2011 ◽  
Vol 66 (7) ◽  
pp. 1797-1807 ◽  
Author(s):  
Angelo Basile ◽  
Gabriele Buttafuoco ◽  
Giacomo Mele ◽  
Anna Tedeschi

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Ivaná Đukic ◽  
Marija Ječmenica Dučić ◽  
Nikola Nikačević ◽  
Menka Petkovska

The goal of this work was to develop a 3D model of Electric Swing Adsorption pro- cess for carbon dioxide capture from effluent gasses from power plants. Detailed 3D model of the composite honeycomb monolithic adsorber was developed for a sin- gle monolith channel and can be used to simulate and represent different physical properties: velocity, concentration and temperature. The advantage of this model is the fact that all physical properties and results can be presented visually in the 3D domain. COMSOL Multiphysics software was used for solving partial differential equations and simulations of adsorption and electrothermal desorption processes. Some simulation results are presented in this work. The results obtained from 3D simulations will be used for the adsorber model reduction to the 1D model which will be used for modeling and optimization of the whole ESA cycle due to its sim- plicity and computational demands. Simulation and optimization runs based on the 1D model will be performed in g-Proms software.


It is well known that for small magnetising forces the magnetisation of iron, nickel, and cobalt increases with increase of temperature, but that it diminishes for large magnetising forces. Bauer has also shown that iron ceases to be magnetic some­ what suddenly, and that the increase of magnetisation for small forces continues to near the point at which the magnetism disappears. His experiments were made upon a bar which was heated in a furnace and then suspended within a magnetising coil and allowed to cool, the observations being made at intervals during cooling. This method is inconvenient for the calculation of the magnetising forces, and the temperature must have been far from uniform through the bar. In my own experi­ments on an impure sample of nickel the curve of magnetisation is determined at temperatures just below the temperature at which the magnetism disappears, which we may appropriately call the critical temperature. Auerbach and Callendar have shown that the electrical resistance of iron increases notably more rapidly than does that of other pure metals. Barrett, in announcing his discovery of recalescence, remarked that the phenomenon probably occurred at the critical temperature. Tait investigated the thermo-electric pro­perties of iron, and found that a notable change occurred at a red heat, and thought it probable that this change occurred at the critical temperature.


Author(s):  
Maaz Akhtar ◽  
Sayyad Zahid Qamar ◽  
Tasneem Pervez ◽  
Farooq Khalfan Al-Jahwari

Petroleum exploration and development industry is witnessing a rapid growth in the use of swelling elastomers. They are being used in new applications aimed at enhanced oil recovery through slimming of well design, zonal isolation, water shutoff, etc. Initially developed as a problem-solving strategy (for repair of damaged or deteriorating wells), swelling elastomers are now targeting major savings in cost and time through reduction in borehole diameter, reduced casing clearance, cementless completions, etc. Due to material and geometric nonlinearity, modeling and simulation of swelling elastomer applications becomes quite complex. In this work, finite element simulation has been carried out to study swelling elastomer seal performance in downhole petroleum applications using the software ABAQUS. A hyperelastic model (that most closely resembles swelling elastomer behavior) is used for simulation of seal behavior. A series of experiments have been designed and performed to determine necessary material properties of a water-swelling elastomer as it gradually swells when exposed to saline water of two different concentrations at 50°C (to emulate field conditions of medium-depth oil wells). A large number of simulations are carried out to investigate sealing behavior against water salinity and swelling time. Sealing pressure at the contact surface between elastomer and formation (or outer casing) is studied for variations in seal length, seal thickness, compression ratio, water salinity, and swelling period. Results show that seal contact pressure increases with amount of swelling, seal length, and compression ratio; higher salinity environment results in lower sealing pressure; and more contact pressure is generated in the case of rock formation as compared to steel outer casing.


1927 ◽  
Vol 46 (5) ◽  
pp. 715-734 ◽  
Author(s):  
Ronald V. Christie ◽  
Carl A. L. Binger

The principles governing the passage of high frequency currents through various conductors have been discussed and exemplified in experiments done on both non-living and living bodies. In Part I it was shown: (1) That the current takes the path of least electrical resistance rather than the shortest path; (2) that maximal heating occurs at the point of greatest concentration of the lines of current flow. In a homogeneous medium with parallel electrodes maximal heat production occurs in those portions of the medium adjoining the electrodes and the heat gradient is from without inward. Under these circumstances maximal heating never occurs at the center. In discussing the localization of heat not only the electrical resistance and current concentration, but also the cooling effect, must be considered. In experiments on the dog's cadaver no evidence of the so called "skin effect" could be demonstrated. This is in contradistinction to the findings of Bettman and Crohn, but the discrepancy is explained on the basis of what we believe to be a technical error in their work. The finding of no "skin effect" is in agreement with the conclusions of Dowse and Iredell, based on both experimental and theoretical considerations. In Part II three types of experiments were performed on the anesthetized dog. The conclusions to be derived from them are these: (1) The heat gradient of the body is reversed during diathermy and heating occurs from without inward; (2) deep heating during diathermy is greater than that which results from the application of local heat to the skin; (3) the lung can be heated by diathermy in spite of simultaneous cooling of the chest wall. These experiments we regard as satisfactory evidence of the passage of the current through the interior of the body.


1971 ◽  
Vol 12 ◽  
pp. 377-388
Author(s):  
Martha S. Hanner

The interplanetary dust may be composed of cometary material, interstellar grains, debris from asteroidal collisions, primordial material formed by direct condensation, or contributions from all of these sources. Before we can determine the origin of the dust, we need to know its physical nature, spatial distribution, and the dynamical forces that act on the particles. The spatial distribution and dynamics are separately treated in this symposium by Roosen. We discuss here the physical characteristics of the dust particles: their size distribution, chemical composition, physical structure, and optical properties.


Sign in / Sign up

Export Citation Format

Share Document