scholarly journals Diseño de un reactor de tornillos para la obtención de bioaceite a partir de pirólisis rápida de biomasa residual

2021 ◽  
Vol 9 (2) ◽  
pp. 26-41
Author(s):  
Jesus Pardo Salazar ◽  
Marlon Darío Sierra Hernández ◽  
Cristian Antonio Pedraza Yepes
Keyword(s):  

Objetivo: Realizar el diseño mecánico de un reactor de tornillo para la obtención de bioaceite mediante pirólisis rápida de biomasa residual. Metodología: Se realizó una estimación del potencial energético de la biomasa residual. Se calcularon las variables térmicas y mecánicas para el dimensionamiento del reactor y la selección de sus componentes. Para seleccionar el reactor más adecuado se aplicó la metodología del Despliegue de la Función Calidad. Se realizó un análisis de esfuerzos mediante la herramienta informática Solidworks®, cuyos resultados permitieron ratificar los parámetros y dimensiones seleccionados para la construcción del reactor. Resultados: Se seleccionó un reactor de doble tornillo con sección transversal en U con base plana. Se determinó que el calor necesario para llevar a cabo la reacción de pirólisis rápida fue 927 kJ/kg. Se seleccionó un tornillo sinfín de 1.68 m de longitud, 1.25 pulgadas de diámetro mayor y 1.5 pulgadas de paso, en acero inoxidable austenítico 316, accionado por un motorreductor de potencia 0.25 HP y torque 20 Nm. Para minimizar pérdidas de calor, se dispuso de una cinta calentadora de 0.1 W/cm2 y un elemento aislante a base de fibra de vidrio, de espesor 130 mm, ambos alrededor del barril contenedor del reactor. Conclusiones: Se seleccionó el modelo de reactor de doble tornillo y sección transversal en forma de U con base plana por ofrecer mayor capacidad volumétrica de transporte y mayor capacidad de mezcla. Se seleccionó un diámetro de 1-1/4” para el tornillo sinfín con el fin de para evitar problemas de deflexión.

Author(s):  
Klaus-Ruediger Peters ◽  
Samuel A. Green

High magnification imaging of macromolecules on metal coated biological specimens is limited only by wet preparation procedures since recently obtained instrumental resolution allows visualization of topographic structures as smal l as 1-2 nm. Details of such dimensions may be visualized if continuous metal films with a thickness of 2 nm or less are applied. Such thin films give sufficient contrast in TEM as well as in SEM (SE-I image mode). The requisite increase in electrical conductivity for SEM of biological specimens is achieved through the use of ligand mediated wet osmiuum impregnation of the specimen before critical point (CP) drying. A commonly used ligand is thiocarbohvdrazide (TCH), first introduced to TEM for en block staining of lipids and glvcomacromolecules with osmium black. Now TCH is also used for SEM. However, after ligand mediated osinification nonspecific osmium black precipitates were often found obscuring surface details with large diffuse aggregates or with dense particular deposits, 2-20 nm in size. Thus, only low magnification work was considered possible after TCH appl ication.


Author(s):  
G.C. Bellolio ◽  
K.S. Lohrmann ◽  
E.M. Dupré

Argopecten purpuratus is a scallop distributed in the Pacific coast of Chile and Peru. Although this species is mass cultured in both countries there is no morphological description available of the development of this bivalve except for few characterizations of some larval stages described for culture purposes. In this work veliger larvae (app. 140 pm length) were examined by the scanning electron microscope (SEM) in order to study some aspects of the organogenesis of this species.Veliger larvae were obtained from hatchery cultures, relaxed with a solution of MgCl2 and killed by slow addition of 21 glutaraldehyde (GA) in seawater (SW). They were fixed in 2% GA in calcium free artificial SW (pH 8.3), rinsed 3 times in calcium free SW, and dehydrated in a graded ethanol series. The larvae were critical point dried and mounted on double scotch tape (DST). To permit internal view, some valves were removed by slightly pressing and lifting the tip of a cactus spine wrapped with DST, The samples were coated with 20 nm gold and examined with a JEOL JSM T-300 operated at 15 KV.


Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


Author(s):  
R. Levi-Setti ◽  
J. M. Chabala ◽  
Y. L. Wang

We have shown the feasibility of 20 nm lateral resolution in both topographic and elemental imaging using probes of this size from a liquid metal ion source (LMIS) scanning ion microprobe (SIM). This performance, which approaches the intrinsic resolution limits of secondary ion mass spectrometry (SIMS), was attained by limiting the size of the beam defining aperture (5μm) to subtend a semiangle at the source of 0.16 mr. The ensuing probe current, in our chromatic-aberration limited optical system, was 1.6 pA with Ga+ or In+ sources. Although unique applications of such low current probes have been demonstrated,) the stringent alignment requirements which they imposed made their routine use impractical. For instance, the occasional tendency of the LMIS to shift its emission pattern caused severe misalignment problems.


Author(s):  
S.R. Glanvill

This paper summarizes the application of ultramicrotomy as a specimen preparation technique for some of the Materials Science applications encountered over the past two years. Specimens 20 nm thick by hundreds of μm lateral dimension are readily prepared for electron beam analysis. Materials examined include metals, plastics, ceramics, superconductors, glassy carbons and semiconductors. We have obtain chemical and structural information from these materials using HRTEM, CBED, EDX and EELS analysis. This technique has enabled cross-sectional analysis of surfaces and interfaces of engineering materials and solid state electronic devices, as well as interdiffusion studies across adjacent layers.Samples are embedded in flat embedding moulds with Epon 812 epoxy resin / Methyl Nadic Anhydride mixture, using DY064 accelerator to promote the reaction. The embedded material is vacuum processed to remove trapped air bubbles, thereby improving the strength and sectioning qualities of the cured block. The resin mixture is cured at 60 °C for a period of 80 hr and left to equilibrate at room temperature.


Author(s):  
M. Sato ◽  
Y. Ogawa ◽  
M. Sasaki ◽  
T. Matsuo

A virgin female of the noctuid moth, a kind of noctuidae that eats cucumis, etc. performs calling at a fixed time of each day, depending on the length of a day. The photoreceptors that induce this calling are located around the neurosecretory cells (NSC) in the central portion of the protocerebrum. Besides, it is considered that the female’s biological clock is located also in the cerebral lobe. In order to elucidate the calling and the function of the biological clock, it is necessary to clarify the basic structure of the brain. The observation results of 12 or 30 day-old noctuid moths showed that their brains are basically composed of an outer and an inner portion-neural lamella (about 2.5 μm) of collagen fibril and perineurium cells. Furthermore, nerve cells surround the cerebral lobes, in which NSCs, mushroom bodies, and central nerve cells, etc. are observed. The NSCs are large-sized (20 to 30 μm dia.) cells, which are located in the pons intercerebralis of the head section and at the rear of the mushroom body (two each on the right and left). Furthermore, the cells were classified into two types: one having many free ribosoms 15 to 20 nm in dia. and the other having granules 150 to 350 nm in dia. (Fig. 1).


Author(s):  
Jaang J. Wang ◽  
Cheng C. Chen ◽  
Men F. Shaio ◽  
Chia T. Liu ◽  
Chung S. Lee ◽  
...  

The involvement of nucleus in the maturation processes of Dengue-2 virus in a mosquito cell line, C6/36 cells, has been identified by the electron microscopy and immunocytochemistry. The C6/36 cells were obtained from ATCC and maintained in MEM culture medium containing 10% fetal bovine serum at 28°C. The cell suspensions or cells grown on teflon-coated coverslips were infected with Dengue-2 virus (107/ml) for various time periods of 2 hours, 3, 6, 8, and 10 days. The cells were then fixed in buffered 1.5% glutaraldehyde, and washed in acetone before immunolabeled with monoclonal antibody. An indirect immunocytochemical labeling method of avidin-biotin complex (ABC) conjugated with peroxidase or gold particles (20 nm in diameter) and a flat embedding technique were used to localize the virus particles.At early stages of infections (before 3 days), there were no virion particles detected. After 6 days and on of infections, cytopathic effect (CPE) was observed and showed positive immuno-peroxidase reactions under the light and electron microscopies.


Author(s):  
John G. Sheehan

Improvements in particulate coatings for printable paper require understanding mechanisms of colloidal interactions in paper coating suspensions. One way to deduce colloidal interactions is to mage particle spacings and orientations at high resolution with cryo-SEM. Recent improvements in cryo-SEM technique have increased resolution enough to image particles in coating paints,vhich are sometimes smaller than 100 nm. In this report, a metal-coating chamber is described for preparation of colloidal suspensions for cryo-SEM at resolution down to 20 nm. It was found that etching is not necessary to achieve this resolution.A 120 K cryo-SEM sample will remain in an SEM for hours without noticeable condensation of imorphous ice. This is due to the high vapor pressure of vapor-condensed amorphous ice, measured by Kouchi. However, clean vacuum is required to coat samples with the thinnest possible continuous metal films which are required for high magnification SEM. Vapor contaminants, especially hrydrocarbons, are known to interfere with thin-film nucleation and growth so that more metal is needed to form continuous films, and resolution is decreased. That is why the metal-coating chamber in fig. 1 is designed for the cleanest possible vacuum. Feedthroughs for the manipulator md the shutter, which are operated during metal coating, are sealed with leak-proof stainless-steel Dellows. The transfer rod slides through a baseplate feedthrough that is double o-ring sealed.


Author(s):  
K. Fukushima ◽  
N. Kohyama ◽  
A. Fukami

A film-sealed high resolution environmental cell(E.C) for observing hydrated materials had been developed by us(l). Main specification of the E.C. is as follows: 1) Accelerated voltage; 100 kV. 2) Gas in the E.C.; saturated water vapour with carrier gas of 50 Torr. 3) Thickness of gas layer; 50 μm. 4) Sealing film; evaporated carbon film(20 nm thick) with plastic microgrid. 5) Resolving power; 1 nm. 6) Transmittance of electron beam; 60% at 100 kV. The E.C. had been successfully applied to the study of hydrated halloysite(2) (3). Kaolin minerals have no interlayer water and are basically non-expandable but form intercalation compounds with some specific chemicals such as hydrazine, formamide and etc. Because of these compounds being mostly changed in vacuum, we tried to reveal the structure changes between in wet air and in vacuum of kaolin minerals intercalated with hydrazine and of hydrated state of montmori1lonite using the E.C. developed by us.


1997 ◽  
Vol 78 (04) ◽  
pp. 1215-1220 ◽  
Author(s):  
D Prasa ◽  
L Svendsen ◽  
J Stürzebecher

SummaryA series of inhibitors of factor Xa (FXa) were investigated using the thrombin generation assay to evaluate the potency and specificity needed to efficiently block thrombin generation in activated human plasma. By inhibiting FXa the generation of thrombin in plasma is delayed and decreased. Inhibitor concentrations which cause 50 percent inhibition of thrombin generation (IC50) correlate in principle with the Ki values for inhibition of free FXa. Recombinant tick anticoagulant peptide (r-TAP) is able to inhibit thrombin generation with considerably low IC50 values of 49 nM and 37 nM for extrinsic and intrinsic activation, respectively. However, the potent synthetic, low molecular weight inhibitors of FXa (Ki values of about 20 nM) are less effective in inhibiting the generation of thrombin with IC50 values at micromolar concentrations.The overall effect of inhibitors of FXa in the thrombin generation assay was compared to that of thrombin inhibitors. On the basis of similar Ki values for the inhibition of the respective enzyme, synthetic FXa inhibitors are less effective than thrombin inhibitors. In contrast, the highly potent FXa inhibitor r-TAP causes a stronger reduction of the thrombin activity in plasma than the most potent thrombin inhibitor hirudin.


Sign in / Sign up

Export Citation Format

Share Document