scholarly journals BIOREDUCTION AND CHARACTERIZATION OF SILVER NANOPARTICLES FROM OIL PALM EMPTY FRUIT BUNCH

2020 ◽  
Vol 21 (4) ◽  
pp. 177
Author(s):  
Siti Suhartati ◽  
Iwan Syahjoko Saputra ◽  
Dwinna Rahmi ◽  
Yoki Yulizar ◽  
Sudirman Sudirman

BIOREDUCTION AND CHARACTERIZATION OF SILVER NANOPARTICLES FROM OIL PALM EMPTY FRUIT BUNCH (OPEFB). The synthesis of silver nanoparticles was successfully carried out by extracting oil palm empty fruit bunch. The precursor used was silver nitrate (AgNO3) with a concentration of 9x10-4 M and 5 wt% of the oil palm empty fruit bunch extract. OPEFB acted as a capping agent in the synthesis of silver nanoparticles. The bioreduction method Ag+ to Ag0 produced a silver nanoparticle colloid in brown color. The results of the UV-Vis spectrophotometer showed the silver nanoparticles colloids spectrum at a wavelength of 420 nm with an absorbance value of 0.5. FTIR shows the reduction and shift of absorption peak in the hydroxyl functional group (-OH) at wavenumbers of 3323 cm-1 and the presence of absorption peaks at 560 cm-1. While, XRD pattern showed the specific crystallinity peaks of silver nanoparticles at 2θ: 33.24°; 39.98°; 61.23°; dan 79.13° respectively with the face-centered cubic crystal structure (FCC) and crystallite size of 15 nm. PSA analysis showed two specific peaks with an average size distribution silver nanoparticles of 43.5 nm and a PDI value of 0.4. Analysis of TEM shows the average particle size of 20 nm with a spherical particle shape.

Author(s):  
SNEHA THAKUR ◽  
KRISHNA MOHAN G

Objective: The main objective of the research work is to evaluate the antityrosinase potential of onion DNA silver nanoparticles (AgNPs). Methods: The onions were procured from the local market and DNA was extracted from onions using detergent and methylated spirit. The isolated DNA was selected for synthesis of AgNPs which acts as capping and reducing agent. About 10 ml of the DNA extract was added to 90 ml of 0.1 N silver nitrate solution. After 24 h incubation, the solution turned dark brown, which indicates the formation of AgNPs. The synthesized DNA AgNPs were characterized by ultraviolet-visible, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) studies. Results: The results revealed that the particles were uniform in shape with face-centered cubic structure. The particles are 153±20.4 nm in size and were no signs of agglomeration measured by DLS studies. The FTIR spectroscopy revealed B form of DNA along with strong N-H stretching, C=N stretching, and also asymmetric vibrations of phosphate groups characteristic for DNA molecule. The XRD studies revealed the face-centered cubic structure. SEM studies revealed the spherical structure with average particle size of 150±0.1 nm for single DNA nanoparticles. The onion DNA AgNPs were further investigated for its antityrosinase activity against the standard kojic acid and were to have anticancer potential nearer to the standard. Conclusion: From the results, it is evident that the synthesized onion DNA AgNPs have antityrosinase potential and can be further investigated for in vivo anticancer potential in future.


2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2017 ◽  
Vol 263 ◽  
pp. 165-169
Author(s):  
Silvia Chowdhury ◽  
Faridah Yusof ◽  
Nadzril Sulaiman ◽  
Mohammad Omer Faruck

In this article, we have studied the process of silver nanoparticles (AgNPs) aggregation and to stop aggregation 0.3% Polyvinylpyrrolidone (PVP) was used. Aggregation study carried out via UV-vis spectroscopy and it is reported that the absorption spectrum of spherical silver nanoparticles were found a maximum peak at 420 nm wavelength. Furthermore, Transmission Electron Microscopy (TEM) were used to characterized the size and shape of AgNPs, where the average particle size is around 10 to 25 nm in diameter and the AgNPs shape is spherical. Next, Dynamic Light Scattering (DLS) were used, owing to observed size distribution and self-correlation of AgNPs.


Drug Research ◽  
2017 ◽  
Vol 67 (05) ◽  
pp. 266-270 ◽  
Author(s):  
Ebrahim Izadi ◽  
Ali Rasooli ◽  
Abolfazl Akbarzadeh ◽  
Soodabeh Davaran

AbstractThrough the present study, an eco-friendly method was used to synthesize the gold nanoparticles (GNPs) by using the sodium citrate and extract of the soybean seed as reducing the agents at PH 3. X-Ray diffraction (XRD) method was used to evaluate the crystal structure of as-synthesized NPs and it’s revealed that this method leads to well crystallized GNPs. In order to determine the particle size and their distribution, field emission scanning microscopy (FE-SEM) and dynamic light scattering (DLS) were used. The results showed that, the average particle size distribution of synthesized GNPs in solutions containing of the soybean extract and 1% citrate at PH 3 is about 109.6 and 140.9 nm, respectively. Also, we find that the average size of GNPs is 40 and 33 nm from solutions of citrate and soybean extract, respectively. It was concluded that using the extract of soybean seeds as reducing agent can lead to GNPs with small size and narrow size distribution.


2013 ◽  
Vol 8 (4) ◽  
pp. 155892501300800 ◽  
Author(s):  
Dawei Gao ◽  
Lili Wang ◽  
Xin Xia ◽  
Hui Qiao ◽  
Yibing Cai ◽  
...  

Two polymer solutions of polyacrylonitrile, polyvinyl pyrrolidone, and Ni(CH3COOH)2 in dimethylformamide were electrospun into ternary composite nanofibers, followed by stabilization and carbonization processes to obtain porous carbon/nickel composite nanofibers with diameters of 100–200 nm. The study revealed that carbon/nickel composite nanofibers were successfully prepared, which allowed nickel particles with diameters of 20–70 nm to be uniformly distributed in the carbon nanofibers. It was also observed that the fibrous structures with particles embedded formed and the fibers broke into shorter fibers after sintering. X-ray diffraction indicated that embedded particles crystallized with the face centered cubic structure. The Brunauer-Emmett-Teller analysis revealed that carbon/nickel composite nanofibers with meso-pores possessed larger specific surface area than that of carbon nanofibers. The specific capacitance of the composite nanofiber electrode was as high as 103.8 F/g and showed stable cyclicity (73.8%).


Author(s):  
Hend Ezzat Salama ◽  
Mohamed Samir Abdel Aziz

Background:: Novel eco-friendly silver nanocomposites of xanthan/chitosan biguanidine hydrochloride polyelectrolyte complexes were successfully prepared. Methods:: Silver nanoparticles (AgNPs) were formed through an insitu eco-friendly reduction by the non-toxic polysaccharides without the usage of toxic reagents. FTIR confirmed the successful preparation of the nanocomposites while XRD confirmed the presence of AgNPs with face-centered cubic structures. TEM confirmed the homogeneous distribution of AgNPs with an average size of 14.1 nm. SEM was used to study the surface morphology of the nanocomposites while the energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of AgNPs. Results:: Thermogravimetric analysis showed that the thermal stability was improved in the presence of AgNPs as detected from the calculated integral procedure decomposition temperature. Antibacterial activity against different bacteria species was significantly improved upon increasing the content of AgNPs. Conclusion:: Due to their interesting properties, the prepared polyelectrolyte complexes and their AgNPs nanocomposites could be employed potentially in many biomedical applications like drug delivery.


2020 ◽  
Vol 20 (3) ◽  
pp. 1678-1684
Author(s):  
Jiraporn Chumpol ◽  
Sineenat Siri

Green synthesis offers an eco-friendly and low-cost approach for the synthesis of silver nanoparticles (AgNPs). Many studies have reported on the use of biomolecules, especially plant extracts, as reducing and/or stabilizing agents in place of toxic chemicals. This study reports on the use of bacterial genomic DNA as an alternative stabilizing agent for the green synthesis of AgNPs under light activation. With both increased DNA quantities and reaction times under light exposure, more stabilized AgNPs formed as indicated by the surface plasmon resonance intensities. The synthesized AgNPs were spherical with an average size of 61.36±10.15 nm as calculated using the dynamic light scattering (DLS) technique. The X-ray diffraction, selected area electron diffraction, and high resolution transmission electron microscope (TEM) analyses confirmed the formation of face-centered cubic (fcc) structured AgNPs. The produced AgNPs exhibited antibacterial activities against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, suggesting its potential application as an antibacterial agent.


2013 ◽  
Vol 734-737 ◽  
pp. 1555-1558
Author(s):  
Cong Hua Hou ◽  
Yun Ge Chen

In order to prepare the nickel nano-metal with high purity and uniform particle size , the arc plasma method was used. The nano-Ni was got under a constant current , voltage , barometric pressure, hydrogen and argon gas . The nickel nanopowders were tested through the Scan Electron Microscope (SEM ), X-ray diffraction (XRD), Laser Sizer Analysis (LSA). The results indicated that the feature of the nickel nanopowders were mainly spherical, smooth surface. The nickel powder particle distribute from 40 to 80nm. And average particle size is 60nm. Nanocrystals had a better internal crystallinity. The crystal structure is face-centered cubic FCC structure, the same as ordinary nickel nanoparticles .


2014 ◽  
Vol 938 ◽  
pp. 236-241 ◽  
Author(s):  
Pallavee Srivastava ◽  
Judith Braganca ◽  
Sutapa Roy Ramanan ◽  
Meenal Kowshik

Nanobiotechnology is a multidisciplinary branch of nanotechnology which includes fabrication of nanosized materials using biological approaches. Highly structured metallic and metal sulfide nanoparticles have been reported to be synthesized by numerous bacteria, fungi, yeasts and viruses. However, biosynthesis of nanoparticles by Haloarchaea (salt-loving archaea) of the third domain of life, Archaea, is in its nascent stages. In this study, we report the intracellular synthesis of stable, mostly spherical silver nanoparticles (SNPs) by the haloarchaeal isolateHalococcus salifodinaeBK6. The isolate adapted to silver nitrate was found to exhibit growth kinetics similar to that of cells unexposed to silver nitrate. The nitrate reductase enzyme assay and the enzyme inhibitor studies showed the involvement of NADH dependent nitrate reductase in silver tolerance, reduction, and synthesis of SNPs. UV visible spectroscopy, XRD, TEM and EDAX were used for characterization of SNPs. The XRD exhibited characteristic Bragg peaks of face centered cubic silver with crystallite domain size of 26 nm and 12 nm for SNPs synthesized in NTYE and halophilic nitrate broth, respectively. TEM analysis exhibited an average particle size of 50.3 nm and 12 nm for SNPs synthesized in NTYE and halophilic nitrate broth (HNB), respectively. The as synthesized SNPs exhibited antimicrobial activity against both Gram positive and Gram negative organisms.


Sign in / Sign up

Export Citation Format

Share Document