scholarly journals Development and analysis of a long-term soil moisture data set in three different agroclimatic zones of South Africa

2021 ◽  
Vol 117 (5/6) ◽  
Author(s):  
Lindumusa Myeni

Understanding the potential impacts of climate variability/change on soil moisture is essential for the development of informed adaptation strategies. However, long-term in-situ soil moisture measurements are sparse in most countries. The objectives of this study were to develop and analyse the temporal variability of a long-term soil moisture data set in South Africa. In this study, a water balance model was used to reconstruct long-term soil moisture data sets from 1980 through 2018, in three sites that represent the diverse agroclimatic conditions of South Africa. Additionally, long-term changes and variability of soil moisture were examined to investigate the potential impacts of climate variability on soil moisture. The results of the Mann–Kendall test showed a non-significant decreasing trend of soil moisture for inland stations at a rate between -0.001 and -0.02 mm per annum. In contrast, a statistically significant (at 5% level of significance) increasing trend of soil moisture for a coastal station at a rate of 0.1131 mm per annum was observed. The findings suggest that the Bainsvlei and Bronkhorstspruit stations located in the inland region are gradually becoming drier as a result of decreasing rainfall and increasing air temperature. In contrast, the Mandeni station located in the coastal region is becoming wetter as a result of increasing rainfall, despite the increase in air temperature. The findings indicate that climate variability is likely to change the soil moisture content, although the influence will vary with region and climatic conditions. Therefore, understanding the factors that affect soil moisture variability at the local scale is critical for the development of informed and effective adaptation strategies.

2015 ◽  
Vol 15 (12) ◽  
pp. 17397-17448 ◽  
Author(s):  
U. Karstens ◽  
C. Schwingshackl ◽  
D. Schmithüsen ◽  
I. Levin

Abstract. Detailed 222Rn flux maps are an essential prerequisite for the use of radon in atmospheric transport studies. Here we present a high-resolution222Rn flux map for Europe, based on a parameterization of 222Rn production and transport in the soil. The 222Rn exhalation rate was parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by local water table depth and soil texture. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based 222Rn profile measurements. Monthly 222Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083° × 0.083° and compared to long-term direct measurements of 222Rn exhalation rates in different areas of Europe. The two realizations of the 222Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The average 222Rn flux from soils in Europe is estimated to be 10 or 15 mBq m-2 s-1, depending on the soil moisture data set, and the seasonal variations in the two realisations range from 7.1 mBq m-2 s-1 in February to 13.9 mBq m-2 s-1 in August and from 10.8 mBq m-2 s-1 in March to 19.7 mBq m-2 s-1 in July, respectively. This systematic difference highlights the importance of realistic soil moisture data for a reliable estimation of 222Rn exhalation rates.


2010 ◽  
Vol 11 (1) ◽  
pp. 46-68 ◽  
Author(s):  
Vimal Mishra ◽  
Keith A. Cherkauer ◽  
Shraddhanand Shukla

Abstract Understanding the occurrence and variability of drought events in historic and projected future climate is essential to managing natural resources and setting policy. The Midwest region is a key contributor in corn and soybean production, and the occurrence of droughts may affect both quantity and quality of these crops. Soil moisture observations play an essential role in understanding the severity and persistence of drought. Considering the scarcity of the long-term soil moisture datasets, soil moisture observations in Illinois have been one of the best datasets for studies of soil moisture. In the present study, the authors use the existing observational dataset and then reconstruct long-term historic time series (1916–2007) of soil moisture data using a land surface model to study the effects of historic climate variability and projected future climate change on regional-scale (Illinois and Indiana) drought. The objectives of this study are to (i) estimate changes and trends associated with climate variables in historic climate variability (1916–2007) and in projected future climate change (2009–99) and (ii) identify regional-scale droughts and associated severity, areal extent, and temporal extent under historic and projected future climate using reconstructed soil moisture data and gridded climatology for the period 1916–2007 using the Variable Infiltration Capacity (VIC) model. The authors reconstructed the soil moisture for a long-term (1916–2007) historic time series using the VIC model, which was calibrated for monthly streamflow and soil moisture at eight U.S. Geological Survey (USGS) gauge stations and Illinois Climate Network’s (ICN) soil moisture stations, respectively, and then it was evaluated for soil moisture, persistence of soil moisture, and soil temperature and heat fluxes. After calibration and evaluation, the VIC model was implemented for historic (1916–2007) and projected future climate (2009–99) periods across the study domain. The nonparametric Mann–Kendall test was used to estimate trends using the gridded climatology of precipitation and air temperature variables. Trends were also estimated for annual anomalies of soil moisture variables, snow water equivalent, and total runoff using a long-term time series of the historic period. Results indicate that precipitation, minimum air temperature, total column soil moisture, and runoff have experienced upward trends, whereas maximum air temperature, frozen soil moisture, and snow water equivalent experienced downward trends. Furthermore, the decreasing trends were significant for the frozen soil moisture in the study domain. The results demonstrate that retrospective drought periods and their severity were reconstructed using model-simulated data. Results also indicate that the study region is experiencing reduced extreme and exceptional droughts with lesser areal extent in recent decades.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


2021 ◽  
Author(s):  
Thomas Cropper ◽  
Elizabeth Kent ◽  
David Berry ◽  
Richard Cornes ◽  
Beatriz Recinos-Rivas

<p>Accurate, long-term time series of near-surface air temperature (AT) are the fundamental datasets on which the magnitude of anthropogenic climate change is scientifically and societally addressed. Across the ocean, these (near-surface) climate records use Sea Surface Temperature (SST) instead of Marine Air Temperature (MAT) and blend the SST and AT over land to create datasets. MAT has often been overlooked as a data choice as daytime MAT observations from ships are known to contain warm biases due to the storage of accumulated solar energy. Two recent MAT datasets, CLASSnmat (1881 – 2019) and UAHNMAT (1900 – 2018), both use night-time MAT observations only. Daytime MAT observations in the International Comprehensive Ocean–Atmosphere Data Set (ICOADS) account for over half of the MAT observations in ICOADS, and this proportion increases further back in time (i.e. pre-1850s). If long-term MAT records over the ocean are to be extended, the use of daytime MAT is vital.</p><p> </p><p>To adjust for the daytime MAT heating bias, and apply it to ICOADS, we present the application of a physics-based model, which accounts for the accumulated energy storage throughout the day. As the ‘true’ diurnal cycle of MAT over the ocean has not been, to-date, adequately quantified, our approach also removes the diurnal cycle from ICOADS observations and generates a night-time equivalent MAT for all observations. We fit this model to MAT observations from groups of ships in ICOADS that share similar heating biases and metadata characteristics. This enables us to use the empirically derived coefficients (representing the physical energy transfer terms of the heating model) obtained from the fit for use in removal of the heating bias and diurnal cycle from ship-based MAT observations throughout ICOADS which share similar characteristics (i.e. we can remove the diurnal cycle from a ship which only reports once daily at noon). This adjustment will create an MAT record of night-time-equivalent temperatures that will enable an extension of the marine surface AT record back into the 18<sup>th</sup> century.</p>


2013 ◽  
Vol 10 (3) ◽  
pp. 3541-3594 ◽  
Author(s):  
A. Loew ◽  
T. Stacke ◽  
W. Dorigo ◽  
R. de Jeu ◽  
S. Hagemann

Abstract. Soil moisture is an essential climate variable of major importance for land-atmosphere interactions and global hydrology. An appropriate representation of soil moisture dynamics in global climate models is therefore important. Recently, a first multidecadal, observational based soil moisture data set has become available that provides information on soil moisture dynamics from satellite observations (ECVSM). The present study investigates the potential and limitations of this new dataset for several applications for climate model evaluation. We compare soil moisture data from satellite observations, reanalysis data and simulation results from a state-of-the-art climate model and analyze relationships between soil moisture and precipitation anomalies in the different datasets. In a detailed regional study, we show that ECVSM is capable to capture well interannual and intraannual soil moisture and precipitation dynamics in the Sahelian region. Current deficits of the new dataset are critically discussed and summarized at the end of the paper to provide guidance for an appropriate usage of the ECVSM dataset for climate studies.


2012 ◽  
Vol 9 (12) ◽  
pp. 13773-13803 ◽  
Author(s):  
B. Orlowsky ◽  
S. I. Seneviratne

Abstract. Recent years have seen a number of severe droughts in different regions around the world, causing agricultural and economic losses, famines and migration. Despite their devastating consequences, the Standardised Precipitation Index (SPI) of these events lies within the range of internal climate variability, which we estimate from simulations from the 5th phase of the Coupled Model Intercomparison Project (CMIP5). In terms of drought magnitude, regional trends of SPI over the last decades remain mostly inconclusive in observations and CMIP5 simulations, although Soil Moisture Anomalies (SMAs) in CMIP5 simulations hint at increased drought in a few regions (e.g. the Mediterranean, Central America/Mexico, the Amazon, North-East Brazil and South Africa). Also for the future, projections of meteorological (SPI) and agricultural (SMA) drought in CMIP5 display large uncertainties over all time frames, generally impeding trend detection. Analogue analyses of the frequencies rather than magnitudes of future drought display, however, more robust signal-to-noise ratios with detectable trends towards more frequent drought until the end of the 21st century in the Mediterranean, South Africa and Central America/Mexico. Other present-day hot spots are projected to become less drought-prone, or to display unsignificant changes in drought occurrence. A separation of different sources of uncertainty in drought projections reveals that for the near term, internal climate variability is the dominant source, while the formulation of Global Climate Models (GCMs) generally becomes the dominant source of uncertainty by the end of the 21st century, especially for agricultural (soil moisture) drought. In comparison, the uncertainty in Green-House Gas (GHG) concentrations scenarios is negligible for most regions. These findings stand in contrast to respective analyses for a heat wave indicator, for which GHG concentrations scenarios constitute the main source of uncertainty. Our results highlight the inherent difficulty of drought quantification and the uncertainty of drought projections. However, high uncertainty should not be equated with low drought risk, since potential scenarios include large drought increases in key agricultural and ecosystem regions.


2018 ◽  
Author(s):  
Felix Zaussinger ◽  
Wouter Dorigo ◽  
Alexander Gruber ◽  
Angelica Tarpanelli ◽  
Paolo Filippucci ◽  
...  

Abstract. Effective agricultural water management requires accurate and timely information on the availability and use of irrigation water. However, most existing information on irrigation water use (IWU) lacks the objectivity and spatio-temporal representativeness needed for operational water management and meaningful characterisation of land-climate interactions. Although optical remote sensing has been used to map the area affected by irrigation, it does not physically allow for the estimation of the actual amount of irrigation water applied. On the other hand, microwave observations of the moisture content in the top soil layer are directly influenced by agricultural irrigation practices, and thus potentially allow for the quantitative estimation of IWU. In this study, we combine surface soil moisture retrievals from the spaceborne SMAP, AMSR2, and ASCAT microwave sensors with modelled soil moisture from MERRA-2 reanalysis to derive monthly IWU dynamics over the contiguous United States (CONUS) for the period 2013–2016. The methodology is driven by the assumption that the hydrology formulation of the MERRA-2 model does not account for irrigation, while the remotely sensed soil moisture retrievals do contain an irrigation signal. For many CONUS irrigation hot spots, the estimated spatial irrigation patterns show good agreement with a reference data set on irrigated areas. Moreover, in intensively irrigated areas, the temporal dynamics of observed IWU is meaningful with respect to ancillary data on local irrigation practices. State-aggregated mean IWU volumes derived from the combination of SMAP and MERRA-2 soil moisture show a good correlation with statistically reported state-level irrigation water withdrawals but systematically underestimate them. We argue that this discrepancy can be mainly attributed to the coarse spatial resolution of the employed satellite soil moisture retrievals, which fails to resolve local irrigation practices. Consequently, higher resolution soil moisture data are needed to further enhance the accuracy of IWU mapping.


2019 ◽  
Vol 23 (2) ◽  
pp. 897-923 ◽  
Author(s):  
Felix Zaussinger ◽  
Wouter Dorigo ◽  
Alexander Gruber ◽  
Angelica Tarpanelli ◽  
Paolo Filippucci ◽  
...  

Abstract. Effective agricultural water management requires accurate and timely information on the availability and use of irrigation water. However, most existing information on irrigation water use (IWU) lacks the objectivity and spatiotemporal representativeness needed for operational water management and meaningful characterization of land–climate interactions. Although optical remote sensing has been used to map the area affected by irrigation, it does not physically allow for the estimation of the actual amount of irrigation water applied. On the other hand, microwave observations of the moisture content in the top soil layer are directly influenced by agricultural irrigation practices and thus potentially allow for the quantitative estimation of IWU. In this study, we combine surface soil moisture (SM) retrievals from the spaceborne SMAP, AMSR2 and ASCAT microwave sensors with modeled soil moisture from MERRA-2 reanalysis to derive monthly IWU dynamics over the contiguous United States (CONUS) for the period 2013–2016. The methodology is driven by the assumption that the hydrology formulation of the MERRA-2 model does not account for irrigation, while the remotely sensed soil moisture retrievals do contain an irrigation signal. For many CONUS irrigation hot spots, the estimated spatial irrigation patterns show good agreement with a reference data set on irrigated areas. Moreover, in intensively irrigated areas, the temporal dynamics of observed IWU is meaningful with respect to ancillary data on local irrigation practices. State-aggregated mean IWU volumes derived from the combination of SMAP and MERRA-2 soil moisture show a good correlation with statistically reported state-level irrigation water withdrawals (IWW) but systematically underestimate them. We argue that this discrepancy can be mainly attributed to the coarse spatial resolution of the employed satellite soil moisture retrievals, which fails to resolve local irrigation practices. Consequently, higher-resolution soil moisture data are needed to further enhance the accuracy of IWU mapping.


2020 ◽  
Vol 12 (20) ◽  
pp. 3439
Author(s):  
Mendy van der Vliet ◽  
Robin van der Schalie ◽  
Nemesio Rodriguez-Fernandez ◽  
Andreas Colliander ◽  
Richard de Jeu ◽  
...  

Reliable soil moisture retrievals from passive microwave satellite sensors are limited during certain conditions, e.g., snow coverage, radio-frequency interference, and dense vegetation. In these cases, the retrievals can be masked using flagging algorithms. Currently available single- and multi-sensor soil moisture products utilize different flagging approaches. However, a clear overview and comparison of these approaches and their impact on soil moisture data are still lacking. For long-term climate records such as the soil moisture products of the European Space Agency (ESA) Climate Change Initiative (CCI), the effect of any flagging inconsistency resulting from combining multiple sensor datasets is not yet understood. Therefore, the first objective of this study is to review the data flagging system that is used within multi-sensor ESA CCI soil moisture products as well as the flagging systems of two other soil moisture datasets from sensors that are also used for the ESA CCI soil moisture products: The level 3 Soil Moisture and Ocean Salinity (SMOS) and the Soil Moisture Active/Passive (SMAP). The SMOS and SMAP soil moisture flagging systems differ substantially in number and type of conditions considered, critical flags, and data source dependencies. The impact on the data availability of the different flagging systems were compared for the SMOS and SMAP soil moisture datasets. Major differences in data availability were observed globally, especially for northern high latitudes, mountainous regions, and equatorial latitudes (up to 37%, 33%, and 32% respectively) with large seasonal variability. These results highlight the importance of a consistent and well-performing approach that is applicable to all individual products used in long-term soil moisture data records. Consequently, the second objective of the present study is to design a consistent and model-independent flagging strategy to improve soil moisture climate records such as the ESA CCI products. As snow cover, ice, and frozen conditions were demonstrated to have the biggest impact on data availability, a uniform satellite driven flagging strategy was designed for these conditions and evaluated against two ground observation networks. The new flagging strategy demonstrated to be a robust flagging alternative when compared to the individual flagging strategies adopted by the SMOS and SMAP soil moisture datasets with a similar performance, but with the applicability to the entire ESA CCI time record without the use of modelled approximations.


Sign in / Sign up

Export Citation Format

Share Document