Effect of mechanical activation of WC-based powder on the properties of sintered alloys

2021 ◽  
Vol 23 (1) ◽  
pp. 68-78
Author(s):  
Ekaterina Abdulmenova ◽  
◽  
Sergey Kulkov ◽  
◽  

Introduction. For the manufacture of wearproof tools and machine elements, the method of powder metallurgy is widely used. The preliminary high-intensity mechanical activation of the powder is used to improve the structure and properties of the alloy obtained by the method of powder metallurgy. The mechanical activation can result in formation of nanostructures with subsequent amorphization of the material, can bring phase transformations, it can certainly affect the properties of the material. However, mechanical treatment does not always lead to a positive result. Therefore, the study of the effect of mechanical activation of WC-based powder on the properties of sintered alloys is important. Purpose of the work: to study the effect of high-intensity mechanical activation of WC-based powder on the structure and properties of sintered samples. The work investigates alloys obtained by the method of powder metallurgy, using mechanically activated powders for 10 to 300 seconds in a planetary ball mill. Materials and methods. The alloys are obtained by cold one-sided pressing followed by sintering at a temperature of 1400 °C in a vacuum furnace. Particle morphology of powder and structure of alloys is analyzed by scanning electron microscopy method. The metallographic analysis of the alloys is carried out by optical microscopy. Phase analysis and the parameters of the crystal structure are performed by X-ray diffraction. The hardness of the sintered samples is measured by hardness tester. Results and its discussion. It is shown that after sintering of powders alloys with WC and Co phases are formed. The lattice parameter of the WC-phase correlates well with values in literature. A second carbide phase, Co3W3C, is formed in the samples upon mechanical activation for more than 100 sec. The minimum porosity of sintered sample is 7.8 ± 1 % that corresponds of sample with preliminary mechanical treatment for 30 seconds. It is shown that the hardness depends on grain size, porosity and second carbide content. Thus, mechanical activation can be effective for increasing the physical and mechanical properties and inhibiting grain growth, but in this case, it is necessary to carry out mechanical processing in the mechanical treatment time range 60-100 sec.

2012 ◽  
Vol 727-728 ◽  
pp. 368-373 ◽  
Author(s):  
Alexandre Antunes Ribeiro ◽  
L.M. Morani ◽  
Roseli Marins Balestra ◽  
F.M.L. Dantas ◽  
Maria Helena M. Rocha-Leão ◽  
...  

The powder metallurgy processing of titanium devices for biomedical applications has complex steps. In order to introduce a new processing route, this work studied a sol-gel technique combined with powder metallurgy for producing porous titanium samples. The process involves the mixture of titanium powders with sodium alginate suspension, which undergoes reticulation by calcium salt solution contact, forming a titanium/calcium alginate hydrogel in granule shape. Later, the hydrogel granules were dried and sintered in a high vacuum furnace for titanium particles consolidation and calcium alginate removal. The samples characterization was performed by scanning electron microscopy, optical microscopy, metallographic analysis, semi-quantitative X-ray fluorescence spectroscopy and X-ray diffraction. The results showed that the methodology used is adequate for producing porous titanium parts, since the samples presented no contamination, a uniform shape, particle consolidation and interconnected porosity. The research continues aiming to obtain samples with different bulk morphology, like, discs or bars for surgical implant applications.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5696
Author(s):  
Hongyan Che ◽  
Yazhong Zhai ◽  
Yingjie Yan ◽  
Yongqing Chen ◽  
Wei Qin ◽  
...  

Oxide dispersion strengthened ferritic steel is considered an important structural material in fusion reactors due to its excellent resistance to radiation and oxidation. Fine and dispersed oxides can be introduced into the matrix via the powder metallurgy process. In the present study, large grain sizes and prior particle boundaries (PPBs) formed in the FeCrAlY alloy prepared via powder metallurgy. Thermo-mechanical treatment was conducted on the FeCrAlY alloy. Results showed that microstructure was optimized: the average grain diameter decreased, the PPBs disappeared, and the distribution of oxides dispersed. Both ultimate tensile strength and elongation improved, especially the average elongation increased from 0.5% to 23%.


2012 ◽  
Vol 122 (3) ◽  
pp. 524-527 ◽  
Author(s):  
P. Novák ◽  
L. Mejzlíková ◽  
V. Hošek ◽  
M. Martínek ◽  
I. Marek ◽  
...  

Ultrasonics ◽  
2012 ◽  
Vol 52 (5) ◽  
pp. 668-675 ◽  
Author(s):  
Jin Xu ◽  
Timothy A. Bigelow ◽  
Larry J. Halverson ◽  
Jill M. Middendorf ◽  
Ben Rusk

2012 ◽  
Vol 482-484 ◽  
pp. 1384-1389 ◽  
Author(s):  
Ling Gang Meng ◽  
Can Feng Fang ◽  
Peng Peng ◽  
Nai Pu Li ◽  
Qiong Zhu ◽  
...  

Microstructure evolution of Mg-5Gd-2Y-2Zn-0.5Zr alloy during high temperature heat-treatment at 500°C in the time range 10-70h was investigated. The results show that after adding the element Y, the as-cast Mg-5Gd-2Y-2Zn-0.5Zr alloy forms the Mg12Zn(Y,Gd) phase with 18R-LPSO structure at the grain boundary. During heat-treatment at 500°C, the stability of 18R-LPSO structure is weakened by Gd atoms, parts of LPSO phases dissolve gradually into the matrix with time prolonged and a new type Mg(Y,Gd)Zn phase come into being. LPSO phase in the grain boundary can ensure the ultimate tensile strength and elongation of the alloy, and effect of dissevering on the LPSO phase by Mg(Gd,Y)Zn phase results the decrease of UTS and elongation.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040031
Author(s):  
Stella Raynova ◽  
Khaled Alsharedah ◽  
Fei Yang ◽  
Leandro Bolzoni

A powder metallurgy approach was applied for the synthesis of an [Formula: see text] Ti-2Al-3Fe alloy. Blends of the elemental Ti, Al and Fe powders were compacted and subsequently sintered. High-frequency induction heating (HFIH) instead of conventional high-vacuum furnace heating was used for the sintering, due to its high efficiency. The effect of temperature on the level of densification, residual porosity and mechanical properties was studied. Electron dispersive spectrum analysis was used to study the dissolution and homogenization of the alloying elements. The results showed that a short induction sintering (IS) cycle in the range of 10–15 min is sufficient to achieve significant powder consolidation, evident by the increase of the density and mechanical properties. The residual porosity diminishes with the increase of the sintering temperature. Full dissolution of the alloying powders is completed after sintering at temperatures above those of [Formula: see text]- to [Formula: see text]-phase transformation.


Sign in / Sign up

Export Citation Format

Share Document