scholarly journals Chronological changes in plant hormone and sugar contents in cv. Ao-Shuang autumn flowering tree peony

2011 ◽  
Vol 38 (No. 3) ◽  
pp. 104-112 ◽  
Author(s):  
M.P. Mornya Philip ◽  
Cheng Fangyun ◽  
Li Hongyan

Successive secondary flowering is critical for tree peony industry. Varying the levels of hormones and sugars are reported to influence plant flowering. This study analyses quantitative changes in the levels of endogenous hormones [indole-3-acetic acid (IAA), abscisic acid (ABA) and gibberellic acid (GA<sub>3</sub>)] and carbohydrates (sucrose, reducing sugar and starch) in the buds of cv. Ao-Shuang tree peony during autumn and spring flowering seasons. The study shows different levels of hormones (ABA, IAA and GA<sub>3</sub>) and carbohydrates (sucrose, reducing sugar and starch) in spring (SFB) and autumn (AFB) flowering buds. Not only is there increase in IAA, GA<sub>3</sub>, sucrose and reducing sugar, but also decrease in ABA and starch during AFB developmental stages. This probably contributes to induced flowering in AFB. Compared with SFB, IAA could be a vital AFB flowering hormone because it peaks at three critical bud developmental stages of bud swelling, shoot elongation and flower bud opening. Whereas sucrose and reducing sugar contents increase in AFB, that of starch decreases. SFB shows similar trends for sucrose, reducing sugar and starch. The findings suggest that cv. Ao-Shuang tree peony blooms in autumn probably due to lack of dormancy, a phenomenon induced by low ABA. Thus flowering of tree peonies in SFB and AFB could be regulated by different combinations of hormonal and sugar signals.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Yanting Chang ◽  
Tao Hu ◽  
Wenbo Zhang ◽  
Lin Zhou ◽  
Yan Wang ◽  
...  

Abstract Tree peony (Paeonia suffruticosa Andrew) is a popular ornamental plant due to its large, fragrant and colorful flowers. The floral development is the most important event in its lifecycle. To explore the mechanism that regulate flower development, we sequenced the flower bud transcriptomes of ‘High Noon’, a reblooming cultivar of P. suffruticosa × P. lutea, using both full-length isoform-sequencing (ISO-seq) and RNA-seq were sequenced. A total of 15.94 Gb raw data were generated in full-length transcriptome sequencing of the 3 floral developmental stages, resulting 0.11 M protein-coding transcripts. Over 457.0 million reads were obtained by RNA-seq in the 3 floral buds. Here, we openly released the full-length transcriptome database of ‘High Noon’ and RNA-seq database of floral development. These databases can provide a fundamental genetic information of tree peony to investigate its transcript structure, variants and evolution. Data will facilitate to deep analyses of the transcriptome for flower development.


2011 ◽  
Vol 91 (6) ◽  
pp. 991-998 ◽  
Author(s):  
Philip Mornya ◽  
Fangyun Cheng

Mornya, P. M. P. and Cheng, F. 2011. The levels of hormone and carbohydrate in autumn and non-autumn flowering tree peonies. Can. J. Plant Sci. 91: 991–998. This study analyzed the levels of gibberellic acid (GA3), indole-3-acetic acid (IAA), cytokinin (CTK) and abscisic acid (ABA) hormones using high-performance liquid chromatography, along with the levels of sucrose, reducing sugar and starch carbohydrates by spectrophotometer during induction, initiation and differentiation stages of bud development in autumn (AFP) and non-autumn (NAFP) flowering tree peony cultivars exhibiting variations in flowering pattern. The experimental design was a randomized complete block with three replications. The variation in flowering pattern between AFP and NAFP was largely influenced by differences in GA3, IAA and CTK levels at different bud developmental stages. The flower formation cycle was completed earlier in AFP than in NAFP, hence flowering was twice annually. Cytokinin, particularly N6-(Δ2-isopentenyl)-adenosine (iPA), could be a critical hormone in autumn flowering of tree peony, as its differences in levels between AFP and NAFP remained significant across bud developmental stages. However, only GA3 had negative differences across bud developmental stages, indicating that GA3 levels were consistently higher in NAFP than in AFP, but the reverse holds true for CTK. The differences in GA3, IAA and CTK between AFP and NAFP were significant (P<0.05) for at least two-thirds of the bud developmental stages. Carbohydrates may not significantly influence the flowering pattern of tree peonies. Autumn flowering in tree peonies could therefore be achieved by regulating GA3, IAA and CTK levels, particularly at the induction and initiation stages of bud development to facilitate the completion of the floral formation cycle, well in advance of bud dormancy period. The findings of this study could lay the scientific basis for genetic engineering of flowering pattern of tree peonies.


2020 ◽  
Author(s):  
zhang chenfei ◽  
Xie XiaoHong ◽  
Jia YongHong ◽  
Wang QingHao ◽  
Wang WenJing ◽  
...  

Abstract Background: Rhododendron fortunei belongs to a scented Rhododendron species native to China, which produces fragrant flowers of great ornamental and environmental values. However, the scents in R. fortunei have not yet been investigated. Results: The results showed that three main VOCs measured from highest to lowest are methyl benzoates, terpenes and fatty acid derivatives. Their content increased after the flower bud opening and reached the highest at half to full blossom. In a flower most VOC contents were measured in petals and only trace amount in other tissues such as stamen, pistil. A small amount of VOCs was determined in leaves as well. All aromatic values were almost corresponded to the contents of three main VOCs, indicating that the flower fragrance arises truly from these VOC components. To understand the mechanism of the formation of this main type fragrance and its regulation, we firstly isolate a gene of RfBAMT from petal of R. fortunei by using homologous cloning and RACE technology. The full length of its cDNA was 1383 bp,with an open reading frame of 1104 bp, encoding a total of 368 amino acids. The phylogenetic tree analysis showed that RfBAMT was the closest to the BSMT of Camellia japonica, belonging to methyltransferases family. Then we measured the expression level of RfBAMT again at four flower developmental stages and in different flower tissues and leaves. The results showed that the expression level of this gene was highly positively correlated with the emitted content of methyl benzoates in the flowering, implying that RfBAMT plays a pivotal role in the formation and regulation of methyl benzoates in R. fortunei . Conclusions: This research showed that the RfBAMT was cloned and identified in our study and its expression level was highly positively correlated with the emitted content of methyl benzoates in the flowers and leaves, which indicated this gene may play an important role on regulation of methyl benzoate synthesis in R. fortunei .


2021 ◽  
Vol 11 (1) ◽  
pp. 3-10
Author(s):  
Nguyen Tran Dong Phuong

In Viet Nam, local varieties of chili have a distinctive aroma and pungency. However, the generation of pure lines from pollen culture in local hot chilli has been very limited reported. Therefore, this study was to relate flower bud size with microspore developmental stages and the culture media have concentration changed of growth regulator effects on the in vitro androgenesis. Flower buds were randomly collected and visually divided into three stage based on both petal and sepal size. Then anther was cultured on MS basal medium with different concentration of hormones NAA changed 0.1 - 0.7 mg/L and kinetin changed 1.0 - 3.0 mg/L, BA changed 0.5 - 1.5 mg/L. The results showed that bud flower have anthers are light violet in color, 2.5 mm long, consisted of anthers with 80 % uni-nucleate and 20 % bi-nucleate microspores were selected. In induction culture media, it was observed that MS medium with 2.0 mg/L Kinetin and 0.5 mg/L NAA gave higher embryo frequency. MS medium with 1 mg/L BA is the best medium for embryo germination and inducting shoots. And ½ MS medium for shoot elongation and rooting.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 113
Author(s):  
Xueqiang Cui ◽  
Jieling Deng ◽  
Changyan Huang ◽  
Xuan Tang ◽  
Xianmin Li ◽  
...  

Dendrobium nestor is a famous orchid species in the Orchidaceae family. There is a diversity of flower colorations in the Dendrobium species, but knowledge of the genes involved and molecular mechanism underlying the flower color formation in D. nestor is less studied. Therefore, we performed transcriptome profiling using Illumina sequencing to facilitate thorough studies of the purple color formation in petal samples collected at three developmental stages, namely—flower bud stage (F), half bloom stage (H), and full bloom stage (B) in D. nestor. In addition, we identified key genes and their biosynthetic pathways as well as the transcription factors (TFs) associated with purple flower color formation. We found that the phenylpropanoid–flavonoid–anthocyanin biosynthesis genes such as phenylalanine ammonia lyase, chalcone synthase, anthocyanidin synthase, and UDP-flavonoid glucosyl transferase, were largely up-regulated in the H and B samples as compared to the F samples. This upregulation might partly account for the accumulation of anthocyanins, which confer the purple coloration in these samples. We further identified several differentially expressed genes related to phytohormones such as auxin, ethylene, cytokinins, salicylic acid, brassinosteroid, and abscisic acid, as well as TFs such as MYB and bHLH, which might play important roles in color formation in D. nestor flower. Sturdy upregulation of anthocyanin biosynthetic structural genes might be a potential regulatory mechanism in purple color formation in D. nestor flowers. Several TFs were predicted to regulate the anthocyanin genes through a K-mean clustering analysis. Our study provides valuable resource for future studies to expand our understanding of flower color development mechanisms in D. nestor.


Reproduction ◽  
2021 ◽  
Vol 162 (3) ◽  
pp. 181-191
Author(s):  
Jessica Ispada ◽  
Aldcejam Martins da Fonseca Junior ◽  
Otávio Luiz Ramos Santos ◽  
Camila Bruna de Lima ◽  
Erika Cristina dos Santos ◽  
...  

Metabolic and molecular profiles were reported as different for bovine embryos with distinct kinetics during the first cleavages. In this study, we used this same developmental model (fast vs slow) to determine if the relationship between metabolism and developmental kinetics affects the levels of acetylation or tri-methylation at histone H3 lysine 9 (H3K9ac and H3K9me3, respectively). Fast and slow developing embryos presented different levels of H3K9ac and H3K9me3 from the earliest stages of development (40 and 96 hpi) and up to the blastocyst stage. For H3K9me3, both groups of embryos presented a wave of demethylation and de novo methylation, although it was more pronounced in fast than slow embryos, resulting in blastocysts with higher levels of this mark. The H3K9ac reprogramming profile was distinct between kinetics groups. While slow embryos presented a wave of deacetylation, followed by an increase in this mark at the blastocyst stage, fast embryos reduced this mark throughout all the developmental stages studied. H3K9me3 differences corresponded to writer and eraser transcript levels, while H3K9ac patterns were explained by metabolism-related gene expression. To verify if metabolic differences could alter levels of H3K9ac, embryos were cultured with sodium-iodoacetate (IA) or dichloroacetate (DCA) to disrupt the glycolytic pathway or increase acetyl-CoA production, respectively. IA reduced H3K9ac while DCA increased H3K9ac in blastocysts. Concluding, H3K9me3 and H3K9ac patterns differ between embryos with different kinetics, the second one explained by metabolic pathways involved in acetyl-CoA production. So far, this is the first study demonstrating a relationship between metabolic differences and histone post-translational modifications in bovine embryos.


2018 ◽  
Vol 19 (10) ◽  
pp. 3278 ◽  
Author(s):  
Zhineng Li ◽  
Yingjie Jiang ◽  
Daofeng Liu ◽  
Jing Ma ◽  
Jing Li ◽  
...  

Wintersweet (Chimonanthus praecox) is a well-known traditional fragrant plant and a winter-flowering deciduous shrub that originated in China. The five different developmental stages of wintersweet, namely, flower-bud period (FB), displayed petal stage (DP), open flower stage (OF), later blooming period (LB), and wilting period (WP) were studied using a scanning electron microscope (SEM) to determine the distribution characteristics of aroma-emitting nectaries. Results showed that the floral scent was probably emitted from nectaries distributed on the adaxial side of the innermost and middle petals, but almost none on the abaxial side. The nectaries in different developmental periods on the petals differ in numbers, sizes, and characteristics. Although the distribution of nectaries on different rounds of petals showed a diverse pattern at the same developmental periods, that of the nectaries on the same round of petals showed some of regularity. The nectary is concentrated on the adaxial side of the petals, especially in the region near the axis of the lower part of the petals. Based on transcriptional sequence and phylogenetic analysis, we report one nectary development related gene CpCRC (CRABS CLAW), and the other four YABBY family genes, CpFIL (FILAMENTOUS FLOWER), CpYABBY2, CpYABBY5-1, and CpYABBY5-2 in C. praecox (accession no. MH718960-MH718964). Quantitative RT-PCR (qRT-PCR) results showed that the expression characteristics of these YABBY family genes were similar to those of 11 floral scent genes, namely, CpSAMT, CpDMAPP, CpIPP, CpGPPS1, CpGPPS2, CpGPP, CpLIS, CpMYR1, CpFPPS, CpTER3, and CpTER5. The expression levels of these genes were generally higher in the lower part of the petals than in the upper halves in different rounds of petals, the highest being in the innermost petals, but the lowest in the outer petals. Relative expression level of CpFIL, CpCRC, CpYABBY5-1, and CpLIS in the innermost and middle petals in OF stages is significant higher than that of in outer petals, respectively. SEM and qRT-PCR results in C. praecox showed that floral scent emission is related to the distribution of nectaries.


2018 ◽  
Vol 40 (2) ◽  
Author(s):  
Lorena Moreira Carvalho Lemos ◽  
Luiz Carlos Chamhum Salomão ◽  
Dalmo Lopes de Siqueira ◽  
Olinto Liparini Pereira ◽  
Paulo Roberto Cecon

Abstract There are little information in the scientific literature on flowering and fruiting of ‘Ubá’ mango trees. These information enables to know the proportion of hermaphrodite flowers in inflorescence, fruit set percentage and developmental stages of the fruit. In this study evaluations on inflorescence and fruit development of the ‘Ubá’ mango tree (Mangifera indica L.) were carried out, as well as the determination of the required number of heat units for full fruit development. Thirty branches whose terminal buds were swollen were selected from five mango trees. With the aid of a camera and a caliper, the panicle and fruit development were evaluated weekly until full fruit development. A digital thermometer was used to record ambient temperatures during fruit development in order to estimate the number of heat units required for complete development of the fruits. Male and hermaphrodite flowers of the panicles were also identified and counted. The developmental cycle of ‘Ubá’ mango from the beginning of apical bud swelling to commercial harvest of the fruit lasted 168 days in 2011 and 154 days in 2012. The number of hermaphrodite flowers and the percentage of fruit set in the inflorescence in 2011 were 32.3 and 0.066%, respectively; and 122.1 and 0.099% in 2012, respectively. There was accumulation of 3,173 heat units from flower bud swelling to full development of the ‘Ubá’ mangoes.


2006 ◽  
Vol 18 (3) ◽  
pp. 359-365 ◽  
Author(s):  
Rogério M. Suzuki ◽  
Gilberto B. Kerbauy

This study attempted to clarify the effects of dark, light and ethylene on plant growth and endogenous levels of indole-3-acetic acid (IAA), cytokinins and abscisic acid in Catasetum fimbriatum. Dark-incubation fully inhibited root and pseudobulb formation as well as leaf growth, but favored shoot elongation. The results of continuous and active growth in dark-incubated shoots (stolons) were induced by strong apical meristem sink activity and by the significantly increased levels of cytokinins in shoots. In fact, shoot length, cytokinin and IAA levels in dark-incubated shoots were about twice as great as for those grown under light conditions. Moreover, the total cytokinin level in shoots of C. fimbriatum under light conditions without ethylene was significantly higher than that found in roots. High levels of cytokinins in dark-grown stolons may be closely related to the absence of roots in C. fimbriatum. Under light conditions, the increased IAA level in shoots is mediated by ethylene. However, ethylene caused a significant increase of cytokinins in roots of light-treated plants, which may be involved in the retardation of root growth. Since the difference of cytokinins in shoots between ethylene-treated and non-treated plants under light conditions is small, it is concluded that the marked inhibition of leaf growth in ethylene-treated plants can be attributed to ethylene. Zeatin and zeatin riboside are the major cytokinins in C. fimbriatum regardless of the light conditions, ethylene treatment or organ types.


1998 ◽  
Vol 123 (4) ◽  
pp. 563-568 ◽  
Author(s):  
Anil P. Ranwala ◽  
William B. Miller

Experiments were conducted to evaluate storage temperature, storage irradiance and prestorage foliar sprays of gibberellin, cytokinin or both on postharvest quality of Oriental hybrid lilies (Lilium sp. `Stargazer'). Cold storage of puffy bud stage plants at 4, 7, or 10 °C in dark for 2 weeks induced leaf chlorosis within 4 days in a simulated consumer environment, and resulted in 60% leaf chlorosis and 40% leaf abscission by 20 days. Cold storage also reduced the duration to flower bud opening (days from the end of cold storage till the last flower bud opened), inflorescence and flower longevity, and increased flower bud abortion. Storage at 1 °C resulted in severe leaf injury and 100% bud abortion. Providing light up to 40 μmol·m-2·s-1 during cold storage at 4 °C significantly delayed leaf chlorosis and abscission and increased the duration of flower bud opening, inflorescence and flower longevity, and reduced bud abortion. Application of hormone sprays before cold storage affected leaf and flower quality. ProVide (100 mg·L-1 GA4+7) and Promalin (100 mg·L-1 each GA4+7 and benzyladenine (BA)) effectively prevented leaf chlorosis and abscission at 4 °C while ProGibb (100 mg·L-1 GA3) and ABG-3062 (100 mg·L-1 BA) did not. Accel (10 mg·L-1 GA4+7 and 100 mg·L-1 BA) showed intermediate effects on leaf chlorosis. Flower longevity was increased and bud abortion was prevented by all hormone formulations except ProGibb. The combination of light (40 μmol·m-2·s-1) and Promalin (100 mg·L-1 each GA4+7 and BA) completely prevented cold storage induced leaf chlorosis and abscission.


Sign in / Sign up

Export Citation Format

Share Document