scholarly journals The influence of long-term organic and mineral fertilization on soil organic matter

2008 ◽  
Vol 3 (No. 2) ◽  
pp. 41-51 ◽  
Author(s):  
T. Šimon

Parameters evaluating soil organic matter quantity (organic C and N content) and quality (hot water extractable C content, aliphatic compounds, microbial biomass C content, basal respiration activity) were determined in soils differently fertilized (NPK &ndash; mineral fertilization 64.6 kg N/ha/year, FYM &ndash; farmyard manure 38.6 kg N/ha/year, FYM + NPK &ndash; 103.3 kg N/ha/year) in long-term field experiment established in 1955 in Prague. Variant without any fertilization was used as a control. Nine years crop rotation (45% cereals, 33% root crops, 22% fodder crops) is practiced in this long-term experiment. Soil samples were taken from the arable layer (0&ndash;20 cm) in spring over the period of 1994&ndash;2004. Continual application of FYM and FYM + NPK increased the organic carbon content, hot water extractable C (HWC) content, aliphatic compounds content and microbial biomass C content significantly compared to control variant. Mineral fertilization (NPK) increased only organic C content significantly compared to control variant; HWC content, aliphatic compounds content and microbial biomass C content were increased not significantly. Basal respiration activity did not differ significantly between the variants but the influence of plants cropped in individual years on the basal respiration was observed. The total N content was increased significantly only in FYM + NPK variant as compared to control variant. Presence of lucerne in crop rotation contributed positively to the total nitrogen content in soil of all variants due to the symbiotic N<sub>2</sub> fixation. C:N ratio varied from 9.96 to 10.46. Significant positive relationships (r = 0.30 to 0.68; P &lt; 0.05) among the all parameters were determined with exception of basal respiration activity. The most of measured characteristics tended to be constant or slightly increase in the period of observation that shows evidence of stability of this soil management system.

2011 ◽  
Vol 51 (No. 6) ◽  
pp. 276-282 ◽  
Author(s):  
T. Šimon

The content of aliphatic compounds, hydrophobicity index, organic C and N content and the microbial biomass and respiration activity were analysed in soil samples originating from different plots of a long-term field experiment (variants: nil, NPK &ndash; mineral fertilization: 64.6&ndash;100 kg/ha/year, FYM &ndash; farmyard manure and FYM + NPK) from three blocks (III, IV and B) with different crop rotation. Samples were taken from 0&ndash;200 mm layer in 2002 and 2003 (spring and autumn). The plots without any fertilization had the significantly lowest aliphatic compound content compared to variants fertilized by FYM or FYM + NPK in all the evaluated blocks in both years. The variants fertilized only by mineral NPK without any organic fertilization had the slightly increased aliphatic compound content but they did not exceed significantly the control variants in most cases. The aliphatic compound contents correlated significantly with the organic C contents in 2002 and 2003, as well. The values of the hydrophobicity index showed a similar trend like the data mentioned above. Organic manure increased the soil organic nitrogen content, similarly to the carbon content. In variants fertilized by FYM and FYM + NPK the higher microbial biomass content was found comparing to unfertilized variants. Correlations between aliphatic compound content and biomass differed in spring (2002: r = 0.065, 2003: r = 0.068) and autumn (2002: r = 0.407, 2003: r = 0.529). Organically fertilized variants had increased basal respiration, in autumn 2002 the basal respiration was higher in variants fertilized by mineral NPK, too. The highest specific respiration was recorded in the unfertilised plot in block B (autumn 2002 and 2003), where low microbial biomass exhibited high activity. Increased specific respiration was found also in plots fertilized by FYM and FYM&nbsp;+ NPK (block III and IV, autumn samplings). Positive significant correlations between microbial biomass content and basal respiration were found in 2002 (spring: r = 0.716) and 2003 (spring: r = 0.765, autumn: r = 0.671).


1996 ◽  
Vol 26 (10) ◽  
pp. 1799-1804 ◽  
Author(s):  
F. Eivazi ◽  
M.R. Bayan

In low-input or unmanaged ecosystems, the relationship between soil enzyme activity and plant biomass is expected and may be used as an early and sensitive indicator of soil productivity. This study was designed to (1) examine the long-term effects of burning on the activities of arylsulfatase, acid phosphatase, α- and β-glucosidase, and urease; (2) determine the relationship between microbial biomass C and enzyme activities as affected by long-term prescribed burning; and (3) study the seasonal variations in activities of the above-mentioned enzymes. Soil samples (Typic Fragiudalf) were collected from southeastern Missouri where a long-term burning experiment was established in 1949. Treatments consisted of (1) annual burning; (2) periodic burning, every 4 years; and (3) control, unburned. Soil samples (0–15 cm) were collected before and after annual and periodic burning during 1992 and seasonally in 1993. Long-term burning treatments significantly reduced the activities of enzymes studied but did not affect the pH and organic C. The microbial biomass C, total N, available P, and available S content of soil samples from both annual and periodic burning plots were significantly reduced. A significant positive correlation between soil enzyme activities and the microbial biomass was established. The treatment effects were apparent over the background seasonal variability, with reduced enzyme activity for the annual and periodic burning plots as compared with the unburned plots.


2019 ◽  
Vol 13 ◽  
pp. 04009 ◽  
Author(s):  
Claudio Mondini ◽  
Giovanni Bigot ◽  
Tania Sinicco ◽  
Davide Mosetti

Biochemical parameters are particularly suited to evaluate soil fertility because soil microorganisms play a pivotal role in determining soil quality and functionand are very sensitive to changes in soil management and environmental conditions. For such reasons, in this work, we used several biochemical indexes to assess the effect on soil fertility of 3 different conservative management systems of vineyards. The managements compared were chemical weed control vs permanent grass (CWC/MWC), land levelling vs undisturbed soil (LL/US), conventional farming vs organic farming (CON/ORG). The following parameters were determined in 2014 and 2015 on soil samples: total organic C (TOC), extractable N (EN), soil basal respiration (SBR), microbial biomass C (BC), microbial quotient (BC/TOC) and metabolic quotient (qCO2 = SBR/BC). Results showed that biochemical indicators were effective in detecting changes in soil fertility between compared systems. In particular, conservative systems (MWC, US and ORG) showed a larger and more efficient microbial biomass and enhanced EN content in comparison to the relative conventional systems. Furthermore BC/TOC and qCO2 indicated higher C use efficiency in conservative systems. Results as a whole indicate that conservative management systems aimed to maintain and enhance soil organic matter displayed a higher level of soil fertility.


2021 ◽  
Vol 13 (17) ◽  
pp. 9769
Author(s):  
Gábor Csitári ◽  
Zoltán Tóth ◽  
Mónika Kökény

The effect of two types of organic amendment (manure and straw incorporation) and various doses (0–200 kg N*ha−1) of mineral N fertilization on microbial biomass C (MBC), aggregate stability (AS), soil organic C (SOC) and grain yield were investigated in an IOSDV long-term fertilization experiment (Keszthely, Hungary). This study was conducted during years 2015–2016 in a sandy loam Ramann-type brown forest soil (Eutric Cambisol according to WRB). Organic amendments had a significant effect on AS, MBC and SOC, increased their values compared to the unamended control. The organic amendments showed different effects on AS and MBC. AS was increased the most by straw incorporation and MBC by manure application. The magnitude of temporal variability of AS and MBC differed. Presumably, the different effects of organic amendments and the different degrees of temporal variability explain why there was only a weak (0.173) correlation between AS and MBC. AS did not correlate with SOC or grain yield. MBC correlated (0.339) with SOC but not with the grain yield. The N fertilizer dose did not have a significant effect on AS and MBC, but had a significant effect on SOC and grain yield.


2012 ◽  
Vol 7 (1) ◽  
pp. 110-114
Author(s):  
Ecaterina Emnova

The paper deals with the evaluation of the intensity of certain soil biochemical processes (e.g. soil organic C mineralization) at Organic and mixed Mineral+Organic fertilization of typical chernozem in crop rotation dynamics (for 6 years) by use of eco-physiological indicators of biological soil quality: microbial biomass carbon, basal soil respiration, as well as, microbial and metabolic quotients. Soil sampling was performed from a long-term field crop experiment, which has been established in 1971 at the Balti steppe (Northern Moldova). The crop types had a more considerable impact on the soil microbial biomass accumulation and community biochemical activity compared to long-term Organic or mixed Mineral + Organic fertilizers amendments. The Org fertilization system doesn’t make it possible to avoid the loss of organic C in arable typical chernozem. The organic fertilizer (cattle manure) is able to mitigate the negative consequences of long-term mineral fertilization.


1993 ◽  
Vol 23 (7) ◽  
pp. 1286-1290 ◽  
Author(s):  
Hannu Fritze ◽  
Taina Pennanen ◽  
Janna Pietikäinen

Development of humus layer soil microbial biomass C (Cmic) and N (Nmic), fungal biomass (as soil ergosterol content), microbial respiration activity, and the soil organic C (Corg) and N (Ntot) were determined in coniferous forest soils that had received a single prescribed fire treatment at different times over a period of 45 years. The ratio of soil respiration rate to microbial biomass C (qCO2) and the Cmic/Corg and Nmic/Ntot percentages were derived from the measurements taken. All the measured biomass indicators reacted identically to show recovery from prescribed burning within 12 years. A raised metabolic quotient (qCO2) was detected in soils over the first 2 years following the fire treatment, but after the third year it had decreased to a stable level. These observations suggest that during the first few years after fire the soil microflora can be characterized on the basis of simple substrate–decomposer relationships. The first 12 years were characterized by increasing Cmic/Corg and Nmic/Ntot percentages, which then stabilized at mean values of 1.3 and 5.5%, respectively. The observed rise in the Cmic within a large pool of Corg suggested increasing availability of energy-rich C sources. These C sources are probably derived from the organic C input resulting from postfire plant succession.


Soil Research ◽  
2000 ◽  
Vol 38 (1) ◽  
pp. 25 ◽  
Author(s):  
B. P. Degens ◽  
L. A. Schipper ◽  
J. J. Claydon ◽  
J. M. Russell ◽  
G. W. Yeates

Long-term application of wastewater adds large amounts of carbon (C), nitrogen (N), and phosphorus (P) to soils, and their effects on soil quality are not fully known. We compared the distribution of C, N, P, and Olsen P in the top 0.75 m of an allophanic soil after 22 years irrigation with dairy factory effluent with that in a non-irrigated soil. Earthworm species, biomass and distribution, microbial biomass, microbial activity, and relative use of substrates were measured to evaluate the contribution of biological processes to cycling and redistribution of total C. Total C did not differ between irrigated and non- irrigated soil, although there was less total C in the 0–0.1 m layer and more total C at 0.1–0.5 m in the effluent-irrigated soil. Microbial biomass C and basal respiration activity were increased by 4- and 1.6- fold, respectively, in the 0–0.1 m layer of the irrigated soil. Measurements of relative use of substrates indicated that the greater microbial biomass in the effluent-irrigated soil was supported by the inputs of available C (particularly lactose) in the effluent rather than by greater decomposition of the organic C in the soil. Irrigation increased total N storage by 2.1 t/ha and total P was increased by 11.5 t/ha. Most of the increase in total N occurred in the 0.1–0.5 m layers, whereas total P was greater at all depths. Olsen P also increased at all depths by 1.3- to 23-fold. Approximately 8% of the N and 91% of the P applied during the past 22 years was stored in the 0–0.75 m layer of the profile, with the potential for further P storage. Effluent irrigation increased the total soil nutrient stores, without detrimental effects on total C storage. Changes in nutrient distribution at the irrigated site can be partially attributed to leaching and the dominance (155 g/m2 ) of the earthworm Aporrectodea longa, which forms permanent burrows to lower depths.


1998 ◽  
Vol 78 (2) ◽  
pp. 283-290 ◽  
Author(s):  
P. Rochette ◽  
E. G. Gregorich

Application of manure and fertilizer affects the rate and extent of mineralization and sequestration of C in soil. The objective of this study was to determine the effects of 3 yr of application of N fertilizer and different manure amendments on CO2 evolution and the dynamics of soil microbial biomass and soluble C in the field. Soil respiration, soluble organic C and microbial biomass C were measured at intervals over the growing season in maize soils amended with stockpiled or rotted manure, N fertilizer (200 kg N ha−1) and with no amendments (control). Manure amendments increased soil respiration and levels of soluble organic C and microbial biomass C by a factor of 2 to 3 compared with the control, whereas the N fertilizer had little effect on any parameter. Soil temperature explained most of the variations in CO2 flux (78 to 95%) in each treatment, but data from all treatments could not be fitted to a unique relationship. Increases in CO2 emission and soluble C resulting from manure amendments were strongly correlated (r2 = 0.75) with soil temperature. This observation confirms that soluble C is an active C pool affected by biological activity. The positive correlation between soluble organic C and soil temperature also suggests that production of soluble C increases more than mineralization of soluble C as temperature increases. The total manure-derived CO2-C was equivalent to 52% of the applied stockpiled-manure C and 67% of the applied rotted-manure C. Estimates of average turnover rates of microbial biomass ranged between 0.72 and 1.22 yr−1 and were lowest in manured soils. Manured soils also had large quantities of soluble C with a slower turnover rate than that in either fertilized or unamended soils. Key words: Soil respiration, greenhouse gas, soil carbon


2011 ◽  
Vol 57 (No. 12) ◽  
pp. 577-582 ◽  
Author(s):  
R. Duffková ◽  
H. Macurová

In three landscape zones of a permanent grassland catchment (discharge zone, D; transient zone, T; and recharge zone, R; Crystallinicum, Czech Republic), soil moisture by volume (&theta;) and soil biological quantity and quality parameters, e.g. oxidizable C (C<sub>ox</sub>), hot water soluble C (C<sub>hws</sub>), microbial biomass C (C<sub>mic</sub>), nitrification (NITR), aerobic N mineralization (MIN) and basal respiration rates (R<sub>bas</sub>), metabolic quotient (qCO<sub>2</sub>: R<sub>bas</sub>/C<sub>mic</sub>) and microbial quotient (C<sub>mic</sub>/C<sub>ox</sub>) were estimated in the surface soil layer. We found out positive correlation of C<sub>mic</sub> and C<sub>mic</sub>/C<sub>ox</sub> with &theta;, or NITR, MIN, R<sub>bas</sub> and C<sub>mic</sub> with C<sub>hws</sub>, but no relationship between &theta; on the one hand and NITR, MIN, R<sub>bas</sub> or C<sub>ox</sub> on the other. The wettest zone D with extremely low pH displayed the highest C<sub>mic</sub> and C<sub>mic</sub>/C<sub>ox</sub> (1081&nbsp;mg/kg, 5.29%) and the lowest qCO<sub>2</sub> (31 &micro;gC/day/mgC<sub>mic</sub>). Soil drought in zones T and R reduced C<sub>mic</sub> and C<sub>mic</sub>/C<sub>ox</sub> (939, 1029, and 3.72, 3.83, respectively) and augmented qCO<sub>2</sub> (42; 51). Rainfall following a prolonged dry period reduced MIN and NITR in permeable zone R as a result of fast microbial regeneration (average in D: 2.24; 2.48 kg N/ha/day, T: 2.62; 2.82 kg N/ha/day, R: 1.51; 1.95 kg N/ha/day).


2011 ◽  
Vol 52 (No. 8) ◽  
pp. 345-352 ◽  
Author(s):  
G. Mühlbachová ◽  
P. Tlustoš

The effects of liming by CaO and CaCO<sub>3</sub> on soil microbial characteristics were studied during laboratory incubation of long-term contaminated arable and grassland soils from the vicinity of lead smelter near Př&iacute;bram (Czech Republic). The CaO treatment showed significant negative effects on soil microbial biomass C and its respiratory activity in both studied soils, despite the fact that microbial biomass C in the grassland soil increased sharply during the first day of incubation. The metabolic quotient (qCO<sub>2</sub>) in soils amended by CaO showed greater values than the control from the second day of incubation, indicating a possible stress of soil microbial pool. The vulnerability of organic matter to CaO could be indicated by the availability of K<sub>2</sub>SO<sub>4</sub>-extractable carbon that increased sharply, particularly at the beginning of the experiment. The amendment of soils by CaCO<sub>3 </sub>moderately increased the soil microbial biomass. The respiratory activity and qCO<sub>2</sub> increased sharply during the first day of incubation, however it is not possible to ascribe them only to microbial activities, but also to CaCO<sub>3</sub> decomposition in hydrogen carbonates, water and CO<sub>2</sub>. The pH values increased more sharply under CaO treatment in comparison to CaCO<sub>3</sub> treatment. The improvement of soil pH by CaCO<sub>3</sub> could be therefore more convenient for soil microbial communities.


Sign in / Sign up

Export Citation Format

Share Document