Soil biological quantity and quality parameters of grasslands in various landscape zones
In three landscape zones of a permanent grassland catchment (discharge zone, D; transient zone, T; and recharge zone, R; Crystallinicum, Czech Republic), soil moisture by volume (θ) and soil biological quantity and quality parameters, e.g. oxidizable C (C<sub>ox</sub>), hot water soluble C (C<sub>hws</sub>), microbial biomass C (C<sub>mic</sub>), nitrification (NITR), aerobic N mineralization (MIN) and basal respiration rates (R<sub>bas</sub>), metabolic quotient (qCO<sub>2</sub>: R<sub>bas</sub>/C<sub>mic</sub>) and microbial quotient (C<sub>mic</sub>/C<sub>ox</sub>) were estimated in the surface soil layer. We found out positive correlation of C<sub>mic</sub> and C<sub>mic</sub>/C<sub>ox</sub> with θ, or NITR, MIN, R<sub>bas</sub> and C<sub>mic</sub> with C<sub>hws</sub>, but no relationship between θ on the one hand and NITR, MIN, R<sub>bas</sub> or C<sub>ox</sub> on the other. The wettest zone D with extremely low pH displayed the highest C<sub>mic</sub> and C<sub>mic</sub>/C<sub>ox</sub> (1081 mg/kg, 5.29%) and the lowest qCO<sub>2</sub> (31 µgC/day/mgC<sub>mic</sub>). Soil drought in zones T and R reduced C<sub>mic</sub> and C<sub>mic</sub>/C<sub>ox</sub> (939, 1029, and 3.72, 3.83, respectively) and augmented qCO<sub>2</sub> (42; 51). Rainfall following a prolonged dry period reduced MIN and NITR in permeable zone R as a result of fast microbial regeneration (average in D: 2.24; 2.48 kg N/ha/day, T: 2.62; 2.82 kg N/ha/day, R: 1.51; 1.95 kg N/ha/day).