scholarly journals Wheat germplasm screening for stem rust resistance using conventional and molecular techniques

2011 ◽  
Vol 47 (Special Issue) ◽  
pp. S146-S154 ◽  
Author(s):  
A. Kokhmetova ◽  
A. Morgounov ◽  
S. Rsaliev ◽  
A. Rsaliev ◽  
G. Yessenbekova ◽  
...  

In Central Asia, stem rust (Puccinia graminis f.sp. tritici) causes considerable damage, especially during growing seasons with high rainfall. Ug99 is a race of stem rust that is virulent to the majority of wheat varieties. To develop disease-free germplasm, wheat material was screened using the predominant stem rust races of Kazakhstan and tested in two nurseries; CIMMYT-Turkey and the Plant Breeding Station at Njoro, Kenya. A total of 11 pathotypes of P. graminis f.sp. tritici were identified in Kazakhstan from the stem rust samples collected in 2008–2009. In particular, pathotypes TDT/H, TPS/H, TTH/K, TKH/R, TKT/C and TFK/R were highly virulent. Of the 170 advanced lines of wheat, 21 CIMMYT lines resistant to 5 aggressive Kazakhstani pathotypes of P. graminis were identified. A high level of resistance was observed in 11 wheat cultivars and advanced lines: Taza, E-19, E-99, E-102, E-572, E-796, E-809 (Kazakhstan), Ekinchi (Azerbaijan), Dostlik, Ulugbek 600 (Uzbekistan) and Umanka (Russia). Based on data obtained from Turkey-CIMMYT and the Plant Breeding Station Njoro, Kenya nurseries, out of 13 tested entries, 6 wheat breeding lines which were resistant to both stem and yellow rust and 10 wheat lines which showed high and moderate levels of resistance to Ug99 were selected. Using the sequence tagged site (STS) molecular marker Sr24#12, associated with Sr24/Lr24, seven wheat entries resistant to stem rust were identified. These results will assist breeders in choosing parents for crossing in programmes aimed at developing varieties with desirable levels of stem rust resistance in Kazakhstan and they will also facilitate stacking the resistance genes into advanced breeding lines.

2016 ◽  
Vol 106 (11) ◽  
pp. 1352-1358 ◽  
Author(s):  
Jayaveeramuthu Nirmala ◽  
Shiaoman Chao ◽  
Pablo Olivera ◽  
Ebrahiem M. Babiker ◽  
Bekele Abeyo ◽  
...  

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, can cause severe yield losses on susceptible wheat varieties and cultivars. Although stem rust can be controlled by the use of genetic resistance, population dynamics of P. graminis f. sp. tritici can frequently lead to defeat of wheat stem rust resistance genes. P. graminis f. sp. tritici race TKTTF caused a severe epidemic in Ethiopia on Ug99-resistant ‘Digalu’ in 2013 and 2014. The gene Sr11 confers resistance to race TKTTF and is present in ‘Gabo 56’. We identified seven single-nucleotide polymorphism (SNP) markers linked to Sr11 from a cross between Gabo 56 and ‘Chinese Spring’ exploiting a 90K Infinium iSelect Custom beadchip. Five SNP markers were validated on a ‘Berkut’/‘Scalavatis’ population that segregated for Sr11, using KBioscience competitive allele-specific polymerase chain reaction (KASP) assays. Two of the SNP markers, KASP_6BL_IWB10724 and KASP_6BL_IWB72471, were predictive of Sr11 among wheat genetic stocks, cultivars, and breeding lines from North America, Ethiopia, and Pakistan. These markers can be utilized to select for Sr11 in wheat breeding and to detect the presence of Sr11 in uncharacterized germplasm.


2011 ◽  
Vol 47 (Special Issue) ◽  
pp. S155-S159 ◽  
Author(s):  
P.K. Malaker ◽  
M.M.A. Reza

Leaf rust caused by Puccinia triticina is the most important disease among the three rusts of wheat in Bangladesh. The disease occurs in all wheat growing areas of the country with varying degrees of severity. Stem rust caused by P. graminis f.sp. tritici was last observed during the mid 1980s, while yellow rust caused by P. striiformis f.sp. tritici occurs occasionally in the north-western region, where a relatively cooler climate prevails during the winter months. None of the rusts has yet reached an epidemic level, but damaging epidemics may occur in future, particularly if a virulent race develops or is introduced. The genes conferring rust resistance in the breeding lines and wheat varieties released in Bangladesh were investigated at CIMMYT-Mexico and DWR-India. The resistance genes Lr1, Lr3, Lr10, Lr13, Lr23 and Lr26, Sr2, Sr5, Sr7b, Sr8b, Sr9b, Sr11 and Sr31; and Yr2KS and Yr9 were found. An adult plant slow rusting resistance gene Lr34 was also identified in some of the breeding lines and varieties based on the presence of clear leaf tip necrosis under field conditions. Considering the possible risk of migration of the devastating Ug99 race of stem rust into the Indo-Pak subcontinent, the Bangladeshi wheat lines and cultivars are being regularly sent to KARI in Kenya for testing their resistance against this race. The resistant lines have been included in multi-location yield trials and multiplied for future use in order to mitigate the threat of Ug99. The resistant lines have also been included in crossing schemes to develop genetic diversity of rust resistance.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Davoud Torkamaneh ◽  
Mehran Patpour

Following emergence of Ug99, the new virulent race of Puccinia graminis f. sp. tritici in Africa, a global effort for identification and utilization of new sources of Ug99-resistant germplasm has been undertaken. In this study, we conducted replicated experiments to evaluate the resistance of Iranian wheat germplasm to the TTKSK lineage of the Ug99 race of P. graminis f. sp. tritici. We also evaluated for presence of stem rust resistance genes (i.e., Sr2, Sr24, Sr26, Sr38, Sr39, Sr31, and Sr1RSAmigo) in wheat cultivars and breeding lines widely cultivated in Iran. Our phenotyping data revealed high levels of susceptibility to Ug99 in Iranian bread wheat germplasm. Our genotyping data revealed that Iranian cultivars do not carry Sr24, Sr26, or Sr1RSAmigo. Only a few salt-tolerant cultivars and breeding lines tested positively for Sr2, Sr31, Sr38, or Sr39 markers. In conclusion, the genetic basis for resistance to Ug99 in Iranian wheat cultivars was found to be vulnerable. Acquiring knowledge about existing resistance genes and haplotypes in wheat cultivars and breeding lines will help breeders, cereal pathologists, and policy makers to select and pyramid effective stem rust resistance genes.


1929 ◽  
Vol 1 (2) ◽  
pp. 163-188 ◽  
Author(s):  
J. B. Harrington ◽  
W. K. Smith

A genetical study of resistance of wheat to black stem rust, and a plant breeding attack on the rust problem are described. A large F2 population of the cross Vernal (T. dicoccum) × Marquis (T. vulgare) was grown under severe natural epidemic conditions in the field and hundreds of F3 progenies were exposed in the seedling stage, under controlled conditions, to pure physiologic forms of rust. In the field Vernal is highly resistant and Marquis susceptible to most forms of stem rust. Resistance in the field proved incompletely dominant and appeared to be governed by a single genetic factor. Marquis and Vernal were found to differ by one main genetic factor, Rb, for seedling reaction to form 21. This factor Rb, carried by Vernal, also governs seedling resistance to forms 17, 29 and 36 and appears to be responsible for the slight seedling resistance of Vernal to form 27. There was some evidence that the factor Rb is the same factor that controls the resistance of the F2 plants to the forms of rust in the field (forms 17, 21, 29 and 36 were known to be present.) A different factor Ra causes the resistance of Marquis seedlings to form 27. Vernal resistance was not found to be associated closely with the seed shape of that variety nor with its adherence of glumes to the seed.


1971 ◽  
Vol 13 (2) ◽  
pp. 186-188 ◽  
Author(s):  
D. R. Knott

Tests were carried out to identify and locate the genes for resistance to races 15B-1L and 56 in Hope and H-44. The gene Sr1 which conditions resistance to race 56 was found to be either very closely linked or more probably allelic to Sr9. It is proposed that it be redesignated Sr9d. The gene Sr2 which conditions adult plant resistance to race 56 appears to be on chromosome 3B. The recessive gene conditioning resistance to race 15B-1L was identified as sr17 which is on chromosome 7B.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 476-480 ◽  
Author(s):  
Y. Jin ◽  
R. P. Singh

The stem rust resistance gene Sr31 derived from rye has been used as an important source of stem rust resistance in many wheat cultivars worldwide. Isolates of Puccinia graminis f. sp. tritici with virulence to Sr31 were identified from Uganda in 1999. Stem rust susceptibility in wheat lines with Sr31 was observed in Kenya in 2003 and 2004. An isolate collected from Uganda in 1999 and an isolate collected from Kenya in 2004, identified to be race TTKS, were used in the rust evaluations. Selected cultivars and advanced breeding lines (450 in total) of wheat from the United States were tested against these two stem rust isolates. Resistance to race TTKS was detected in major classes of wheat with the following frequencies: 16% of hard red spring wheat, 48% of hard red winter wheat, and 27% of soft winter wheat. The genes that conferred resistance in the spring wheat have not been conclusively identified. Resistance in cultivar Ivan was likely due to Sr24. Resistance in hard red winter wheat was postulated to be primarily due to Sr24, and resistance in soft winter wheat was postulated to be primarily due to Sr36. The 1AL.1RS translocation present in many U.S. winter wheat cultivars and breeding lines appears to carry an effective resistance gene different from Sr31. The presence of resistance to race TTKS in the adapted germ plasm presents an opportunity to improve stem rust resistance in wheat.


2019 ◽  
Vol 20 (19) ◽  
pp. 4887 ◽  
Author(s):  
Li ◽  
Dong ◽  
Ma ◽  
Tian ◽  
Qi ◽  
...  

Wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt) had been a devastating foliar disease worldwide during the 20th century. With the emergence of Ug99 races, which are virulent to most stem rust resistance genes deployed in wheat varieties and advanced lines, stem rust has once again become a disease threatening global wheat production. Sr52, derived from Dasypyrum villosum and mapped to the long arm of 6V#3, is one of the few effective genes against Ug99 races. In this study, the wheat–D. villosum Robertsonian translocation T6AS·6V#3L, the only stock carrying Sr52 released to experimental and breeding programs so far, was crossed with a CS ph1b mutant to induce recombinants with shortened 6V#3L chromosome segments locating Sr52. Six independent homozygous recombinants with different segment sizes and breakpoints were developed and characterized using in situ hybridization and molecular markers analyses. Stem rust resistance evaluation showed that only three terminal recombinants (1381, 1380, and 1392) containing 8%, 22%, and 30% of the distal segment of 6V#3L, respectively, were resistant to stem rust. Thus, the gene Sr52 was mapped into 6V#3L bin FL 0.92–1.00. In addition, three molecular markers in the Sr52-located interval of 6V#3L were confirmed to be diagnostic markers for selection of Sr52 introgressed into common wheat. The newly developed small segment translocation lines with Sr52 and the identified molecular markers closely linked to Sr52 will be valuable for wheat disease breeding.


1941 ◽  
Vol 19c (11) ◽  
pp. 438-445 ◽  
Author(s):  
T. Johnson ◽  
Margaret Newton

Eighteen stem rust resistant wheat varieties were tested, in the greenhouse, for their reaction to three physiologic races of Puccinia graminis Tritici Erikss. and Henn. at three different temperatures: a constant low temperature of about 60° F., a constant high temperature of about 80° F., and an intermediate temperature which fluctuated daily from 50° to 55° F. at night to 70° to 85° F. at midday.At the low and at the intermediate temperature some of the varieties proved immune while others proved highly or moderately resistant. At the high temperature five varieties (Bokveld, Iumillo, Gaza, Red Egyptian, and N.A. 95 Egypt) were immune or highly resistant; six varieties (Marquillo × Waratah, Hope, Hochzucht, Minor, Bobin Gaza Robin, and Federation × Acme) were moderately resistant; and seven varieties (Kenya, Syria, McMurachy, Sweden, Rhodesian, Talberg, and Eureka) were moderately or completely susceptible.


1970 ◽  
Vol 48 (8) ◽  
pp. 1439-1443 ◽  
Author(s):  
P. Bartoš ◽  
G. J. Green ◽  
P. L. Dyck

Thirty-four European wheat cultivars were classified into eight groups according to their reactions to seven North American races of Puccinia graminis f. sp. tritici. Cultivars of seven groups were crossed with a variety or single gene line having similar rust reactions. These crosses indicated that the resistance of Hybrid 80-3, Stabil, and Vrakuňská (group 1) was conferred by stem rust resistance gene Sr5; Admonter Früh (group 2) carries Sr5 and an unidentified gene; Flevina (group 4) carries Sr11; Erythrospermum 974 (group 5) carries Sr5 and Sr8; Étoile de Choisy (group 6) carries an unidentified gene for moderate resistance to all the races used; and Mironovskaja 808 (group 7) and Belocerkovskaja 198 (group 8) each carry an unidentified gene. The five cultivars in group 3 were not studied genetically but they react like Marquis and may carry Sr7b.


Sign in / Sign up

Export Citation Format

Share Document