scholarly journals Effect of cosolvents (polyols) on structural and foaming properties of soy protein isolate  

2017 ◽  
Vol 35 (No. 1) ◽  
pp. 57-66 ◽  
Author(s):  
Pan Mingzhe ◽  
Meng Xianjun ◽  
Jiang Lianzhou ◽  
Yu Dianyu ◽  
Liu Tianyi

Effect of polyols (mannitol, sorbitol, and xylitol) at three concentrations (5, 10, and 15% w/w) on the structure of soy protein isolates (SPI) was investigated. Changes in foaming properties of SPI were then examined with the addition of polyols at different concentrations. The interactions between SPI and polyols resulted in a substantial decrease in protein surface hydrophobicity and intrinsic tryptophan fluorescence intensity, along with the covering of tyrosine. Furthermore, circular dichroism (CD) spectroscopy of SPI suggested that a more ordered and compact conformation was induced by polyols. Consequently, these structural changes led to lower foamability of SPI. An increase in the viscosity of SPI suspension seemed to be advantageous for improving the foam stability of SPI.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1721
Author(s):  
Yaru Wu ◽  
Zhucheng Yin ◽  
Xuejiao Qie ◽  
Yao Chen ◽  
Maomao Zeng ◽  
...  

The interaction of soy protein isolate (SPI) and its hydrolysates (SPIHs) with cyanidin-3-O-glucoside (C3G) at pH 7.0 were investigated to clarify the changes in the antioxidant capacity of their complexes. The results of intrinsic fluorescence revealed that C3G binds to SPI/SPIHs mainly through hydrophobic interaction, and the binding affinity of SPI was stronger than that of SPIHs. Circular dichroism and Fourier-transform infrared spectroscopy analyses revealed that the interaction with C3G did not significantly change the secondary structures of SPI/SPIHs, while the surface hydrophobicity and average particle size of proteins decreased. Furthermore, the SPI/SPIHs-C3G interaction induced an antagonistic effect on the antioxidant capacity (ABTS and DPPH) of the complex system, with the masking effect on the ABTS scavenging capacity of the SPIHs-C3G complexes being lower than that of the SPI-C3G complexes. This study contributes to the design and development of functional beverages that are rich in hydrolysates and anthocyanins.


2015 ◽  
Vol 26 ◽  
pp. 48-55 ◽  
Author(s):  
Rocío Morales ◽  
Karina D. Martínez ◽  
Víctor M. Pizones Ruiz-Henestrosa ◽  
Ana M.R. Pilosof

2013 ◽  
Vol 31 (13-14) ◽  
pp. 1545-1552 ◽  
Author(s):  
Maomao Zeng ◽  
Benu Adhikari ◽  
Zhiyong He ◽  
Fang Qin ◽  
Xiaolin Huang ◽  
...  

2011 ◽  
Vol 183-185 ◽  
pp. 1094-1099
Author(s):  
Chun Xia Sui ◽  
Guo Ping Yu ◽  
Lian Zhou Jiang ◽  
Yi Hong Bao ◽  
De Jun Mei ◽  
...  

The work attempts to study the surface hydrophobicity (S0) of soy protein isolate(SPI)-guar gum(GG) systems for biomaterial. Effect of four factors on the S0 values of the mixtures were studied. A response surface analysis was carried out using the Box-Behnken Design (BBD)method in order to determine the effects and interactions of pH (6.0, 8.0, 10.0), salt(0.05, 0.15, 0.25M), guar gum(0.10, 0.30, 0.50% w/v) and SPI concentrations (3, 4, 5% w/v) on the S0 values of mixtures. The datas were fitted into second order quadratic model. Salt concentration, pH and SPI concentration, interactions between pH and salt concentration, pH and GG concentration, pH and SPI concentration, GG and SPI concentrations were significant(P<0.05).


Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Mingyu He ◽  
Changling Wu ◽  
Lijia Li ◽  
Li Zheng ◽  
Tian Tian ◽  
...  

This study examined the ability of cavitation jet processing to regulate the oxidation concentrations with 2,2’-azobis (2-amidinopropane) dihydrochloride (AAPH) (0.2, 1, and 5 mmol/L) and the structure and emulsification of soy protein isolate (SPI). The tested properties included particle size distribution, hydrophobic properties (sulfhydryl group (SH) and disulfide bond (S-S) contents, surface hydrophobicity (H0)), emulsifying properties (particle size and ζ-potential of emulsions, emulsification activity index (EAI), and emulsification stability index (ESI)), as well as conformational characteristics. The high shear force of cavitation jet treatment reduced the particle size of oxidized SPI and distributed uniformly. Cavitation jet (90 MPa)-treated SPI (AAPH with 1 mmol/L) demonstrated a high H0 (4688.70 ± 84.60), high EAI (71.78 ± 1.52 m2/g), and high ESI (86.73 ± 0.97%). The ordered secondary structure (α-helix and β-turn content) of SPI was enhanced by the cavitation jet. Meanwhile, the distribution of SPI-oxidized aggregates was observed under an atomic force microscope. Therefore, cavitation jet processing combined with oxidation treatment is an effective method to improve the characteristics of SPI and has potential industrial application prospects.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuhang Xi ◽  
Aiping Zhang ◽  
Zhongjiang Wang ◽  
Shahzad Farooq ◽  
Cen Zhang ◽  
...  

The complex of soy protein isolate (SPI)/bamboo shoot protein concentrate (BPC) was developed to stabilize camellia oil-in-water (O/W) emulsions. The surface hydrophobicity of the BPC/SPI complex driven by hydrogen bonds and electrostatic attractions was improved. With the increasing ratio of BPC in the complex, a tighter network layer structure of the complex was formed due to the rearrangement of proteins, and the emulsions showed a progressive enhancement in the gel-like structures. At the SPI/BPC ratio of 2:1, the emulsions had smaller droplet size and lower creaming index of 230 nm and 30%, and the emulsifying activity and stability indices of the emulsions were 803.72 min and 11.85 g/m2, respectively, indicating a better emulsifying activity and stability of emulsions. Meanwhile, the emulsions stabilized by the complex at the ratio of 2:1 showed better storage and antioxidant stability. These findings are expected to develop the application of bamboo shoots in emulsion-based food products such as mayonnaise, salad dressings, and sauces.


Sign in / Sign up

Export Citation Format

Share Document