scholarly journals Accumulation and subcellular distribution of cadmium in ramie (Boehmeria nivea L. Gaud.) planted on elevated soil cadmium contents

2013 ◽  
Vol 59 (No. 2) ◽  
pp. 57-61 ◽  
Author(s):  
Zhu QH ◽  
Huang DY ◽  
Liu SL ◽  
Luo ZC ◽  
Rao ZX ◽  
...  

The tolerance, accumulation and subcellular distribution characteristics of cadmium (Cd) in ramie (Boehmeria nivea L. Gaud.) were investigated using a 2-year field experiment. The results indicated that ramie has a certain extent of tolerance to soil Cd (≤ 20 mg/kg) contamination with no significant decrease in shoot biomass and fibre yield relative to control conditions. Although ramie did not hyperaccumulate Cd, it accumulated considerable amount of Cd in the aboveground parts (approximately 0.19 to 1.09 kg/ha annually). The Cd contents retained in ramie tissues were found in order of roots > stems > leaves. Further, regarding the subcellular distribution of Cd in ramie tissues, 80% of the total Cd was bound to the cell walls of the roots and stems, whereas in leaves the proportion of Cd stored in the cell wall fraction was around 60% and a lesser amount of Cd was stored in the soluble fraction (24.1–25.5%). Our collective results indicated that ramie adapts to Cd stress via the store of a large amount of Cd in cell walls, and suggested potential usefulness of ramie in the phytoremediation of Cd-contaminated farmlands.

1976 ◽  
Vol 158 (2) ◽  
pp. 409-417 ◽  
Author(s):  
D C Kilpatrick ◽  
J L Stirling

An alpha-D-galactosidase was detected in cells of the cellular slime mould, Dictyostelium discoideum, at all stages of development. Its specific activity was highest during early development (interphase), and this accumulation of enzyme appears to require protein synthesis de novo. Its subcellular distribution differs from that of other D. discoideum glycosidases, since most activity was recovered in the soluble fraction. No evidence was obtained for more than one isoenzymic form after subjection of extracts to electrophoresis and various chromatographic procedures. It is excreted from the cell during development, but no evidence was found for an extracellular function for the enzyme.


2019 ◽  
Vol 49 (11) ◽  
Author(s):  
Jiayue Wan ◽  
Hexigeduleng Bao ◽  
Lihong Huang ◽  
Yanfei Ding ◽  
Zhixiang Chen ◽  
...  

ABSTRACT: Toxic metals contamination of soil has become a serious problem in recent years. In this study, Chinese cabbage (a relatively high-accumulator of cadmium (Cd)) and cabbage (a relatively low-accumulator of Cd) were cultured in monoculture and in intercropping in the Cd-contaminated soil, to evaluate the effect of intercropping on the alteration of Cd extraction. Both the pot experiments and field experiments indicated that intercropping increased the Cd extraction by Chinese cabbage and decreased the Cd extraction by cabbage. Thus, Cd extraction was advanced while safe production was obtained. Further pot experiment was conducted to investigate the alterations of soil Cd fractions, soil pH, and soil enzyme activities to reveal their possible relationship with Cd extraction between different planting patterns. Results revealed that three individual Chinese cabbages in one intercropping pot played the same effect on alteration of these factors as six individual Chinese cabbages in one monoculture pot. The intercropping increased Cd extraction by Chinese cabbage and decreased Cd extraction by cabbage, probably by influencing mechanisms such as soil enzyme activities (especially the urease activity) in the cultivation system. Effect of intercropping on Cd accumulation is an important issue in cultivation of vegetables in potentially contaminated land.


2020 ◽  
Author(s):  
D Chen ◽  
PJ Harris ◽  
Ian Sims ◽  
Z Zujovic ◽  
LD Melton

© The Author(s). 2017. Background: Collenchyma serves as a mechanical support tissue for many herbaceous plants. Previous work based on solid-state NMR and immunomicroscopy suggested collenchyma cell walls (CWs) may have similar polysaccharide compositions to those commonly found in eudicotyledon parenchyma walls, but no detailed chemical analysis was available. In this study, compositions and structures of cell wall polysaccharides of peripheral collenchyma from celery petioles were investigated. Results: This is the first detailed investigation of the cell wall composition of collenchyma from any plant. Celery petioles were found to elongate throughout their length during early growth, but as they matured elongation was increasingly confined to the upper region, until elongation ceased. Mature, fully elongated, petioles were divided into three equal segments, upper, middle and lower, and peripheral collenchyma strands isolated from each. Cell walls (CWs) were prepared from the strands, which also yielded a HEPES buffer soluble fraction. The CWs were sequentially extracted with CDTA, Na2CO3, 1 M KOH and 4 M KOH. Monosaccharide compositions of the CWs showed that pectin was the most abundant polysaccharide [with homogalacturonan (HG) more abundant than rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II)], followed by cellulose, and other polysaccharides, mainly xyloglucans, with smaller amounts of heteroxylans and heteromannans. CWs from different segments had similar compositions, but those from the upper segments had slightly more pectin than those from the lower two segments. Further, the pectin in the CWs of the upper segment had a higher degree of methyl esterification than the other segments. In addition to the anticipated water-soluble pectins, the HEPES-soluble fractions surprisingly contained large amounts of heteroxylans. The CDTA and Na2CO3 fractions were rich in HG and RG-I, the 1 M KOH fraction had abundant heteroxylans, the 4 M KOH fraction was rich in xyloglucan and heteromannans, and cellulose was predominant in the final residue. The structures of the xyloglucans, heteroxylans and heteromannans were deduced from the linkage analysis and were similar to those present in most eudicotyledon parenchyma CWs. Cross polarization with magic angle spinning (CP/MAS) NMR spectroscopy showed no apparent difference in the rigid and semi-rigid polysaccharides in the CWs of the three segments. Single-pulse excitation with magic-angle spinning (SPE/MAS) NMR spectroscopy, which detects highly mobile polysaccharides, showed the presence of arabinan, the detailed structure of which varied among the cell walls from the three segments. Conclusions: Celery collenchyma CWs have similar polysaccharide compositions to most eudicotyledon parenchyma CWs. However, celery collenchyma CWs have much higher XG content than celery parenchyma CWs. The degree of methyl esterification of pectin and the structures of the arabinan side chains of RG-I show some variation in the collenchyma CWs from the different segments. Unexpectedly, the HEPES-soluble fraction contained a large amount of heteroxylans.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244085
Author(s):  
Mohammad Mazbah Uddin ◽  
Zhenfang Chen ◽  
Lingfeng Huang

Sesuvium portulacastrum is a well-known halophyte with considerable Cd accumulation and tolerance under high Cd stress. This species is also considered as a good candidate of Cd phytoremediation in the polluted soils. However, the mechanism of Cd accumulation, distribution and fractionation in different body parts still remain unknown. Seedlings of Sesuvium portulacastrum were studied hydroponically under exposure to a range of Cd concentrations (50 μM or μmol/L to 600 μM or μmol/L) for 28 days to investigate the potential accumulation capability and tolerance mechanisms of this species. Cd accumulation in roots showed that the bio-concentration factor was > 10, suggesting a strong ability to absorb and accumulate Cd. Cd fractionation in the aboveground parts showed the following order of distribution: soluble fraction > cell wall > organelle > cell membrane. In roots, soluble fraction was mostly predominant than other fractions. Cd speciation in leaves and stems was mainly contained of sodium chloride and deionised water extracted forms, suggesting a strong binding ability with pectin and protein as well as with organic acids. In the roots, inorganic form of Cd was dominant than other forms of Cd. It could be suggested that sodium chloride, deionised water and inorganic contained form of Cd are mainly responsible for the adaption of this plant in the Cd stress environment and alleviating Cd toxicity.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jiaojiao Zhu ◽  
Peng Zhao ◽  
Zhaojun Nie ◽  
Huazhong Shi ◽  
Chang Li ◽  
...  

Abstract Background Cadmium (Cd) accumulation in crops affects the yield and quality of crops and harms human health. The application of selenium (Se) can reduce the absorption and transport of Cd in winter wheat. Results The results showed that increasing Se supply significantly decreased Cd concentration and accumulation in the shoot and root of winter wheat and the root-to-shoot translocation of Cd. Se application increased the root length, surface area and root volume but decreased the average root diameter. Increasing Se supply significantly decreased Cd concentration in the cell wall, soluble fraction and cell organelles in root and shoot. An increase in Se supply inhibited Cd distribution in the organelles of shoot and root but enhanced Cd distribution in the soluble fraction of shoot and the cell wall of root. The Se supply also decreased the proportion of active Cd (ethanol-extractable (FE) Cd and deionized water-extractable (FW) Cd) in root. In addition, the expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 significantly increased with increasing Cd concentration in root, and the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root was downregulated by increasing Se supply, regardless of Se supply or Cd stress. The expression of TaHMA3-b in root was significantly downregulated by 10 μM Se at both the 5 μM and 25 μM Cd level but upregulated by 5 μM Se at the 25 μM Cd level. The expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 in shoot was downregulated by increasing Se supply at 5 μM Cd level, and 5 μM Se upregulated the expression of those genes in shoot at 25 μM Cd level. Conclusions The results confirm that Se application limits Cd accumulation in wheat by regulating the subcellular distribution and chemical forms of Cd in winter wheat tissues, as well as the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root.


Chemosphere ◽  
2020 ◽  
Vol 252 ◽  
pp. 126471 ◽  
Author(s):  
Chiquan He ◽  
Yanping Zhao ◽  
Feifei Wang ◽  
Kokyo Oh ◽  
Zhenzhen Zhao ◽  
...  

2020 ◽  
Vol 10 (10) ◽  
pp. 3410 ◽  
Author(s):  
Elnaz Amirahmadi ◽  
Seyed Mohammad Hojjati ◽  
Claudia Kammann ◽  
Mohammad Ghorbani ◽  
Pourya Biparva

Today, it is very important to protect plants in soils contaminated with metals. We investigated the behavior of cadmium during the establishment of oak seedlings (Quercus castaneifolia C.A. Mey.) under biochar influence. This study was conducted in pots with loamy soil. Cadmium was added to soil at 0, 10, 30, and 50 mg per kg of soil, indicated by Control, Cd10, Cd30 and Cd50. Biochar was produced at 500–550 °C from rice husk and added at 1, 3, and 5% (wt/wt) levels, indicated by B1, B3, B5, and mixed with soil at planting in three replications. Generally, increasing biochar rates had significant effects on seedling height, diameter, and biomass. This coincided with Cd immobilization in the contaminated soil which reflects a decrease in Cd concentrations in the plant bioavailability of Cd. The tolerance index increased significantly, by 40.9%, 56%, and 60.6% in B1, B3, and B5 with Cd50, respectively, compared to polluted soil. The percent of Cd removal efficiency for Cd50 was 21%, 47%, and 67% in B1, B2, and B5, respectively. Our study highlights that biochar can reduce Cd bioavailability and improve the growth of oak seedlings in contaminated soil.


1979 ◽  
Vol 184 (2) ◽  
pp. 215-219 ◽  
Author(s):  
D C Kilpatrick ◽  
M M Yeoman ◽  
A R Gould

Plants of Datura stramonium (thorn-apple) were dissected into their component tissues and examined for the presence of the Datura lectin. This lectin was easily detected in seeds and in various parts of the flowers of adult plants. Traces were also found in green (emerged) cotyledons and roots of seedlings. The specific lectin activity in seeds contained within the fruits increased as the seeds matured. Mature seeds were homogenized in sucrose and separated by differential centrifugation into four fractions, three of which were clearly of distinct composition. Most of the lectin activity sedimented with the low-speed (cell-wall/protein-body) pellet, but a similar specific activity was recovered from the other fractions. However, if EDTA was included in the homogenization medium, three or four times more lectin activity was recovered in the soluble fraction. Immunofluorescent staining of formaldehyde-fixed sections showed that the lectin was localized in the cytoplasm, with little associated with cell walls. The possible relevance of these results to the function of the lectin in plant cells is discussed.


2021 ◽  
Vol 763 ◽  
pp. 144021
Author(s):  
César O. Arévalo-Hernández ◽  
Enrique Arévalo-Gardini ◽  
Fiorella Barraza ◽  
Abel Farfán ◽  
Zhenli He ◽  
...  
Keyword(s):  

1970 ◽  
Vol 16 (3) ◽  
pp. 187-191 ◽  
Author(s):  
Gail Dolan Rock ◽  
B. F. Johnson

When cell walls of Schizosaccharomyces pombe were removed, the protoplast contained most of the ribonuclease but only about 50% of the aminopeptidase activity. In cell homogenates approximately 75% of the total peptidase activity was in the soluble fraction; the membrane fraction retained an average of 25% while the ribosomes had less than 1% of the total activity. The RNase activity was highest in stationary phase, aminopeptidase at mid log phase. Properties of the soluble aminopeptidase were similar in many respects to those of the enzyme from Escherichia coli. In contrast, 90% of the ribonuclease activity was attached to the membrane fraction and up to 10% was found on the ribosomes. The ribosome-bound ribonuclease required incubation in 4 M urea for activation; however, the purified ribonuclease had properties similar to the ribonuclease I of E. coli.


Sign in / Sign up

Export Citation Format

Share Document