scholarly journals   The effect of mineral N fertiliser and sewage sludge on yield and nitrogen efficiency of silage maize

2012 ◽  
Vol 58 (No. 2) ◽  
pp. 76-83 ◽  
Author(s):  
J. Černý ◽  
J. Balík ◽  
M. Kulhánek ◽  
F. Vašák ◽  
L. Peklová ◽  
...  

A field experiment was conducted on a chernozem soil to estimate fertiliser N efficiency of silage maize (Zea mays L.) by the difference method as influenced by the type of N fertiliser (mineral-MF vs. sewage sludge-SS), and N rate. Eight N treatments were included (0, 60, 120, 180, and 240 kg N/ha prior to maize sowing, 60 kg N/ha at planting in MF; 120, and 240 kg N/ha in SS. The average dry mater (DM) yields were 11.2&ndash;14.8 t/ha. Average nitrogen uptakes were 88&ndash;185 kg N/ha, when the average N contents in DM were 0.8&ndash;1.25%. Nitrogen utilization efficiency (NUE) was a relatively stable value for treatments with MF. The best use of nitrogen from MF was reached by 60 and 120 kg/ha N doses. The average values of recovery efficiency of applied N (RE<sub>N</sub>) were calculated as 41&ndash;57%. The use of SS increased the yield of silage maize by 19&ndash;25% compared to control, above all first and second year after their application. Mineral-fertilizer-N equivalents (MFE) for SS were calculated as 55 and 64%. &nbsp;

Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 519 ◽  
Author(s):  
J. Sierra ◽  
S. Fontaine ◽  
L. Desfontaines

Laboratory incubations and a field experiment were carried out to determine the factors controlling N mineralization and nitrification, and to estimate the N losses (leaching and volatilization) in a sewage-sludge-amended Oxisol. Aerobically digested sludge was applied at a rate equivalent to 625 kg N/ha. The incubations were conducted as a factorial experiment of temperature (20˚C, 30˚C, and 40˚C) soil water (–30 kPa and –1500 kPa) sludge type [fresh (FS) water content 6230 g/kg; dry (DS) water content 50 g/kg]. The amount of nitrifiers was determined at the beginning and at the end of the experiment. The incubation lasted 24 weeks. The field study was conducted using bare microplots (4 m) and consisted of a factorial experiment of sludge type (FS and DS) sludge placement (subsurface, I+; surface, I–). Ammonia volatilization and the profile (0–0.90 m) of mineral N concentration were measured during 6 and 29 weeks after sludge application, respectively. After 24 weeks of incubation at 40˚C and –30 kPa, net N mineralization represented 52% (FS) and 71% (DS) of the applied N. The difference between sludges was due to an initial period of N immobilization in FS. Nitrification was more sensitive than N mineralization to changes in water potential and it was fully inhibited at –1500 kPa. The introduction of a large amount of nitrifiers with FS did not modify the rate of nitrification, which was principally limited by soil acidity (pH 4.9). Although N mineralization was greatest at 30˚C, nitrification increased continuously with temperature. Nitrogen mineralization from DS was well described by the double-exponential equation. For FS, the equation was modified to take into account an immobilization-remineralization period. Sludge placement significantly affected the soil NO-3/NH+4 ratio in the field: 16 for I+ and 1.5 for I–, after 11 weeks. In the I– treatment, nitrification of the released NH+4 was limited by soil moisture because of the dry soil mulch formed a few hours after rain. At the end of the field experiment, the estimated losses of N by leaching were 432 kg N/ha for I+ and 356 kg N/ha for I–. Volatilization was not detectable in the I+ microplots and it represented only 0.5% of the applied N in the I– microplots. The results showed that placement of sludge may be a valuable tool to decrease NO-3 leaching by placing the sludge under unfavourable conditions for nitrification.


2021 ◽  
Vol 13 (4) ◽  
pp. 2226
Author(s):  
Joisman Fachini ◽  
Thais Rodrigues Coser ◽  
Alyson Silva de Araujo ◽  
Ailton Teixeira do Vale ◽  
Keiji Jindo ◽  
...  

The thermochemical transformation of sewage sludge (SS) to biochar (SSB) allows exploring the advantages of SS and reduces possible environmental risks associated with its use. Recent studies have shown that SSB is nutrient-rich and may replace mineral fertilizers. However, there are still some questions to be answered about the residual effect of SSB on soil nutrient availability. In addition, most of the previous studies were conducted in pots or soil incubations. Therefore, the residual effect of SSB on soil properties in field conditions remains unclear. This study shows the results of nutrient availability and uptake as well as maize yield the third cropping of a three-year consecutive corn cropping system. The following treatments were compared: (1) control: without mineral fertilizer and biochar; (2) NPK: with mineral fertilizer; (3) SSB300: with biochar produced at 300 °C; (4) SSB300+NPK; (5) SSB500: with biochar produced at 500 °C; and (6) SSB500+NPK. The results show that SSB has one-year residual effects on soil nutrient availability and nutrient uptake by maize, especially phosphorus. Available soil P contents in plots that received SSB were around five times higher than the control and the NPK treatments. Pyrolysis temperature influenced the SSB residual effect on corn yield. One year after suspending the SSB application, SSB300 increased corn yield at the same level as the application of NPK. SSB300 stood out and promoted higher grain yield in the residual period (8524 kg ha−1) than SSB500 (6886 kg ha−1). Regardless of pyrolysis temperature, biochar boosted the mineral fertilizer effect resulting in higher grain yield than the exclusive application of NPK. Additional long-term studies should be focused on SSB as a slow-release phosphate fertilizer.


2019 ◽  
Vol 232 ◽  
pp. 88-94 ◽  
Author(s):  
Zheng Liu ◽  
Jia Gao ◽  
Fei Gao ◽  
Peng Liu ◽  
Bin Zhao ◽  
...  

Revista CERES ◽  
2012 ◽  
Vol 59 (5) ◽  
pp. 689-694 ◽  
Author(s):  
Thiago de Oliveira Vargas ◽  
Ellen Rúbia Diniz ◽  
Ricardo Henrique Silva Santos ◽  
Alysson Roberto de Almeida ◽  
Segundo Urquiaga ◽  
...  

Roots effect is not generally considered in studies assessing the performance of crops in response to green manuring. However, such effect can contribute to a better understanding of crop rotation. The aim of this study was to assess the effect of root and shoot of two legumes on the production of cabbage. The experiment was conducted in pots of 10 liters containing substrate of 2:1 soil/sand. The experiment was arranged in a factorial scheme (2x3 + 2) in a randomized block design with five replicates using two legume species (Crotalaria juncea L. and Canavalia ensiformis L), three plant parts (root, shoot, or whole plant), and two additional treatments (mineral fertilization with 100% and 50% of the recommended dose of N for growing cabbage). Pots with legume treatments received mineral fertilizer with 50% of the recommended dose of N for growing cabbage. The experimental plot consisted of a pot containing one plant of cabbage. Legumes were grown in pots and harvested at 78 days. The root biomass was determined in extra pots. Production was assessed using head fresh and dry weight. The application of the whole plant of both legume species reduced cabbage production. However, root or shoot of both legume species was equivalent to 50% of mineral N fertilization required for the cultivation of cabbage.


2002 ◽  
Vol 46 (10) ◽  
pp. 199-208 ◽  
Author(s):  
D. Bolzonella ◽  
L. Innocenti ◽  
F. Cecchi

The paper deals with the performances of the mesophilic anaerobic digestion treatment of sewage sludge from a full scale BNR process without primary settling (nominally 300,000 PE). A relation between the activated sludge observed yields, Yobs, and the anaerobic digester performance was preliminarily found: for values of Yobs of 0.25 kgVSS/kgCOD the anaerobic digester specific gas production showed the best performances (0.22 m3/kgVSfed). This has to be confirmed with wider future studies. It was also shown the level of sludge pre-thickening to be reached for the self-sustaining warming of the digester also in wintertime. According to the energetic balance and to a comparison with an aerobic stabilisation process, it was pointed out as when a co-generation unit for heat and energy production was introduced about 3.4 kWh/PE y of energy were produced in the anaerobic digestion process. On the other hand, 4.3 kWh/PE y were spent if an aerobic stabilisation process was applied. The economic assessment, carried out on the basis of the energy balances, showed that the anaerobic digestion is always economically advantageous if compared to aerobic stabilisation processes, also for small WWTPs. According to the energetic evaluations an environmental balance was assessed, in terms of CO2 emissions. The difference between anaerobic and aerobic processes was about 5.3 kgCO2/PE y in favour of anaerobic processes application.


Sign in / Sign up

Export Citation Format

Share Document