scholarly journals Production of cabbage grown in pots containing legumes' root and shoot

Revista CERES ◽  
2012 ◽  
Vol 59 (5) ◽  
pp. 689-694 ◽  
Author(s):  
Thiago de Oliveira Vargas ◽  
Ellen Rúbia Diniz ◽  
Ricardo Henrique Silva Santos ◽  
Alysson Roberto de Almeida ◽  
Segundo Urquiaga ◽  
...  

Roots effect is not generally considered in studies assessing the performance of crops in response to green manuring. However, such effect can contribute to a better understanding of crop rotation. The aim of this study was to assess the effect of root and shoot of two legumes on the production of cabbage. The experiment was conducted in pots of 10 liters containing substrate of 2:1 soil/sand. The experiment was arranged in a factorial scheme (2x3 + 2) in a randomized block design with five replicates using two legume species (Crotalaria juncea L. and Canavalia ensiformis L), three plant parts (root, shoot, or whole plant), and two additional treatments (mineral fertilization with 100% and 50% of the recommended dose of N for growing cabbage). Pots with legume treatments received mineral fertilizer with 50% of the recommended dose of N for growing cabbage. The experimental plot consisted of a pot containing one plant of cabbage. Legumes were grown in pots and harvested at 78 days. The root biomass was determined in extra pots. Production was assessed using head fresh and dry weight. The application of the whole plant of both legume species reduced cabbage production. However, root or shoot of both legume species was equivalent to 50% of mineral N fertilization required for the cultivation of cabbage.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1482
Author(s):  
Silvia Pampana ◽  
Alessandro Rossi ◽  
Iduna Arduini

Winter cereals are excellent candidates for biosolid application because their nitrogen (N) requirement is high, they are broadly cultivated, and their deep root system efficiently takes up mineral N. However, potential N leaching from BS application can occur in Mediterranean soils. A two-year study was conducted to determine how biosolids affect biomass and grain yield as well as N uptake and N leaching in barley (Hordeum vulgare L.), common wheat (Triticum aestivum L.), durum wheat (Triticum turgidum L. var. durum), and oat (Avena byzantina C. Koch). Cereals were fertilized at rates of 5, 10, and 15 Mg ha−1 dry weight (called B5, B10, and B15, respectively) of biosolids (BS). Mineral-fertilized (MF) and unfertilized (C) controls were included. Overall, results highlight that BS are valuable fertilizers for winter cereals as these showed higher yields with BS as compared to control. Nevertheless, whether 5 Mg ha−1 of biosolids could replace mineral fertilization still depended on the particular cereal due to the different yield physiology of the crops. Moreover, nitrate leaching from B5 was comparable to MF, and B15 increased the risk by less than 30 N-NO3 kg ha−1. We therefore concluded that with specific rate settings, biosolid application can sustain yields of winter cereals without significant additional N leaching as compared to MF.


2017 ◽  
Vol 4 (2) ◽  
pp. 183-186
Author(s):  
Prabhakaran J ◽  
Kavitha D

An experiment was conducted in order to determine the allelopathic effects of the aqueous extract of Trianthima portulacastrum L.on the seed germination, seedling growth and chlorophyll content ofsesame (Sesamum indicum L.). Greenhouse experiment was carried out as RCBD (Randomized complete block design)with four replications. Treatments included 0, 1, 2, 3 and 4% (W/W) residues of whole plant of T.portulacastrum with normal field soil. Results showed that the low concentrations of T.portulacastrum had no significant effect on the germination percentage, seedling length, dry weight, total chlorophyll contents at lower concentration(1%) of weed residues. However, treatments with higher concentrations had negative effects on germination, growth and seedling dry weight of sesame.


1989 ◽  
Vol 16 (3) ◽  
pp. 265 ◽  
Author(s):  
TL Setter ◽  
H Greenway ◽  
T Kupkanchanakul

Submergence of rice in water at low CO2 concentrations was studied in phytotron experiments using plants in the 3rd to 4th leaf stage. Cultivars known to differ in tolerance to complete submergence were adversely affected by the same mechanisms but to a different degree. Submergence for 4-12 days either reduced dry weight production of the whole plant by 6 to 10 fold or even resulted in a loss of dry weight. Nevertheless, the emerging leaf elongated, and both ethanol insoluble material and protein content increased with time. These increases were associated with translocation of dry matter and nitrogen from expanded to expanding leaves. Submergence also reduced concentrations of soluble sugars and starch in all plant parts by 4 to 12 fold. In contrast, concentrations of potassium and free amino acids in shoots were either the same or, in the case of the emerging leaf, higher than in plants which were not submerged. These results indicate (i) these solutes were not limiting growth and (ii) the tissues retained their semipermeability to these solutes during submergence. Insufficient capacity of root metabolism in submerged plants was indicated by low rates of respiration, which persisted in the presence of glucose, and by a low ability to consume ethanol. A model is presented on the adverse effects of submergence of rice which considers possible interactions between CO2, low O2 and high ethylene concentrations.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
F. Mintah ◽  
Y. Z. Mohammed ◽  
S. Lamptey ◽  
B. D. K. Ahiabor

Inoculating groundnut and cowpea with highly effective and competitive rhizobial strain improves nodulation. A field experiment was carried out at the experimental field of the Faculty of Agriculture, University for Development Studies, Nyankpala, to evaluate the growth and yield responses of cowpea and groundnut to five rhizobial inoculant strains in the Guinea Savanna zone. The experiment was laid out in a randomized complete block design (RCBD) with eight (8) treatments replicated four (4) times. The treatments included five rhizobial inoculant strains (NC 92, KNUST 1002, KNUST 1003, KNUST 1006, and BR 3267), two N fertilizer levels (20 kg·N/ha and 40 kg·N/ha), and a control. The results showed that rhizobial inoculation and N fertilizer application increased nodulation, biomass yield, pod number, pod weight, hundred seed weight, nodule dry weight, and pod yield of groundnut compared with the control. Rhizobial inoculation averagely increased the nodulation and yield by 63 and 67%, respectively, compared with the control. Mineral N fertilizer (20 kg N/ha) on average increased the nodulation and yield by 24 and 25%, respectively, compared with the control plots. It can be recommended from this study that, in the absence of highly competitive rhizobial strains such as KNUST 1006 and NC 92 as biofertilizers for increasing the nodulation and yield of cowpea and groundnut, 20 kg·N/ha can be used for the purpose. Further research is recommended using these rhizobial strains in combination with lower rates of N fertilizers (<20 kg·ha−1).


Author(s):  
Antônio C. dos Santos Júnior ◽  
Marco A. C. de Carvalho ◽  
Oscar M. Yamashita ◽  
Tauan R. Tavanti ◽  
Renan F. R. Tavanti

ABSTRACT The use of microorganisms in agriculture such as Azospirillum brasilense and the cultivation of cover crops in the off season, together with nitrogen fertilization, may be interesting alternatives to increase crop yield. The objective of this study was to evaluate the growth, production and nitrogen concentration of maize grown in succession to cover crops and their interactions with A. brasilense inoculation and topdressing mineral N fertilization. The experiment was conducted on Oxisol, in randomized block design in split-split-plot scheme with four repetitions. The plots consisted of four cover crops: jackbean (Canavalia ensiformis), dwarf pigeon pea (Cajanus cajan), crotalaria (Crotalaria spectabilis) and spontaneous vegetation. In the subplots, with or without inoculation of A. brasilense in maize seeds, and in the sub-subplots: with or without topdressing N fertilization. It was verified that jackbean can generate increments of up to 8.3% in grains per ear, 6.9% in length of ear and 15.2% in mass of one hundred grains. Consequently, the grain yield was higher in this treatment (18%). The inoculation with A. brasilense and topdressing N fertilization did not generate significant increments in maize production components, as observed for cover crops.


2003 ◽  
Vol 60 (2) ◽  
pp. 359-370 ◽  
Author(s):  
Ângela Maria Cangiani Furlani ◽  
Cristiane Pierrotte Carvalho ◽  
José Guilherme de Freitas ◽  
Marcelo Fontanetti Verdial

Field symptoms of open spikelets in wheat were observed in specific cultivars and supposedly related to low B soils and differential B requirement among cultivars. This study aimed to evaluate the response of four wheat (Triticum aestivum L.) cultivars, IAC 24, IAC 60, IAC 287 and IAC 289, to increasing B concentrations in nutrient solution. The experiment was set up in a randomized complete block design, with four replicates and five B concentrations (0.0, 0.05, 0.2, 0.8 and 2.0 mg L-1), during 1997/1998, in a greenhouse. Plants were grown to maturity and evaluated for plant height, spike number and length, open spikelet number, grains per spike, plant parts dry matter, B, P, K, Ca and Mg leaf concentrations and total nutrient contents. The visual symptoms of B deficiency consisted of open spikelets, distorted spikes without grains. 'IAC 60' and 'IAC 287' had higher B efficiency, with the highest grain yields in lower B concentrations. The 'IAC 287' and 'IAC 24' were more tolerant to the highest B concentrations. 'IAC 24' required more B for grain production as compared to the other cultivars. The critical leaf B concentration for deficiency was 25 mg kg-1 of dry matter tissue for all cultivars, and for toxicity were: 44 to 45 mg kg-1 for 'IAC 60' and 'IAC 289'; 228 and 318 mg kg-1 for 'IAC 24' and 'IAC 287', respectively. Except for the highest B level in the nutrient solution, the leaf P, K, Ca and Mg concentrations and whole plant contents were in an adequate range in the plants and did not vary among cultivars.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 750
Author(s):  
Jianwei Zhang ◽  
Yan Zhou ◽  
Weiwei Li ◽  
Muhammad Y. Nadeem ◽  
Yanfeng Ding ◽  
...  

Straw-derived N (Straw-N) is an important organic N source, but its distribution in soil–rice systems regulated by water management and N fertilization is poorly understood. Therefore, a pot experiment using 15N-labeled wheat residue was conducted with conventional flooded irrigation (CF) and alternate wetting/drying irrigation (AWD) both with and without N fertilization. Results showed that the whole-plant straw–N recovery rate and the soil residue rate were 9.2–11.9% and 33.5–43.1%, and 10.2–13.8% and 33.7–70.2% at panicle initiation stage (PI) and mature stage (MS), respectively. There was no interaction between water management and N fertilization. Compared to CF, AWD did not affect whole-plant straw-N absorption and significantly changed its distribution in various plant parts, such as increasing the straw-N accumulation in roots at PI and decreasing it at MS. N fertilization addition markedly promoted the transfer of straw-N to the plant but reduced the contribution rate of N uptake by the plant. Furthermore, AWD or N fertilization addition allowed more straw-N to remain in the soil, and a positive interaction effect on the straw-N loss mitigation was found. These results suggest that AWD combined with N fertilization addition is a great measure to improve the efficient utilization of straw-N and avoid the risk of environmental pollution in a soil–rice system.


2019 ◽  
pp. 1566-1571
Author(s):  
Hellen Cristina da Silva ◽  
Luara Cristina de Lima ◽  
Reginaldo de Camargo ◽  
Regina Maria Quintão Lana ◽  
Ernane Miranda Lemes ◽  
...  

The objective of this research was to evaluate the efficiency of different sources of residues in the composition of organomineral fertilizers on common bean yield. The experiment was carried out in a greenhouse at the Federal University of Uberlândia. A randomized complete block design was used in the 2 x 4 + 2 factorial scheme corresponding to two organic sources (biosolids and filter cake) and four doses of pelletized organomineral fertilizer (50, 75, 100 and 125% of the recommendation for common bean, plus two additional treatments without fertilization and fertilization with mineral fertilizer). The plant height and stem diameter were evaluated at 30 days after sowing (DAS), and an average number of pods plant-1 and grains pod-1, yield (g plant-1), dry mass (g), and mass of 1000 grains (g) at 84 DAS. The organomineral fertilizer based on biosolids fertilizer provides the largest growth with the use of 100% of the recommended dose, the largest volume of dry mass up to 75% and the highest yield at 50%. The organomineral fertilizer based on filter cake increased dry mass volume. The organomineral fertilizers evaluated have the potential to substitute exclusively mineral fertilization in the common bean crop.


2015 ◽  
Vol 95 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Suzanne E. Allaire ◽  
Benjamin Baril ◽  
Anne Vanasse ◽  
Sébastien F. Lange ◽  
John MacKay ◽  
...  

Allaire, S. E., Baril, B., Vanasse, A., Lange, S. F., MacKay, J. and Smith, D. L. 2015. Carbon dynamics in a biochar-amended loamy soil under switchgrass. Can. J. Soil Sci. 95: 1–13. The environmental impacts of switchgrass production for bioenergy could be reduced through the use of biofertilizers rather than mineral fertilizers and through soil amendment with biochar. The objectives of this study were: (1) to assess the impact of biochar and biofertilizer on switchgrass (Panicum virgatum L.) yield and parameters related to carbon dynamics, (2) to correlate carbon parameters with soil physico-chemical properties over the first two growing seasons, and (3) to develop a C budget. A complete randomized block design was installed in a sandy loam with split plot treatment design, the main plots receiving 0 or 10 t ha−1of biochar and the sub − plots receiving no fertilization, mineral N fertilization, or biofertilizers. Biofertilizers had no significant impact on plant and soil. Biochar increased yield relative to the control treatment by about 10% during the first year and root biomass by up to 50% after 2 yr (P>0.1). Mineral N fertilization also increased yield resulting in higher plant C sequestration after 2 yr. Biochar increased CO2soil concentration (CO2-soil) by up to 50% but its impact on CO2emission flux (CO2-flux) changed over time. The impact of mineral fertilization on CO2-fluxalso varied with time. Soil CO2dynamics was mostly influenced by temperature, N and water content. Biochar and fertilization treatments showed interactions on some plant and soil parameters. The highest C sequestration budget was obtained with a combination of biochar and mineral N fertilization. The equivalent of about one-third of the increase in soil C content associated with biochar treatments was respired away by soil microorganisms. Nearly one-fourth of C sequestered by plants remained in or at the soil surface (root and crop residues).


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 903
Author(s):  
Karin Kauer ◽  
Sandra Pärnpuu ◽  
Liina Talgre ◽  
Viacheslav Eremeev ◽  
Anne Luik

This study aimed to investigate the soil organic carbon (SOC) sequestration rate and soil organic matter (SOM) composition in conventional rotational cropping with mineral fertilization compared with organic cover cropping with and without composted manure addition during 2008–2018 to specify the SOM stabilization under different farming systems. The SOC proportion in particulate organic matter (POM) (63–2000 µm) and mineral-associated organic matter (MAOM) (<63 µm) fractions were estimated in different treatments, and the SOM composition in the fractions was characterized by FTIR spectroscopy. The SOC sequestration rate was treatment-dependent, with the higher SOC sequestration rate (1.26 Mg ha−1 y−1) in the organic treatment with cover crop and composted manure. Across all treatments, 57.3%–77.8% of the SOC stock was in the MAOM fraction. Mineral N fertilization increased POM-C concentration by 19%–52% compared with the unfertilized control. Under the organic treatments, the POM-C concentration was 83%–95% higher than the control. The MAOM-C concentration increased by 8%–20%. The mineral N fertilization and organic treatments (with and without cover crops and composted manure) increased the SOC stock proportion of POM. The highest proportion of SOC stock related to POM was in the cover cropping system, reducing the proportion of C related to the MAOM fraction, but the addition of composted manure with cover cropping also increased the proportion of C in MAOM. Compared with MAOM, the POM had a less resistant organic matter composition, and the POM resistance was higher in organic than conventional treatments. In general, the recalcitrance of SOM increased with SOC concentration. The POM fraction had higher aromaticity (or degree of decomposition) than the MAOM fraction. The aromaticity in POM and MAOM fractions was higher in the organic farming system and depended on mineral N fertilization and cover cropping, but the effect of manure was not significant. Although the SOC sequestration rate was higher under manure addition, resulting in the highest formation of both POM and MAOM in the soil, manure addition had little effect on overall SOM composition compared with cover crops.


Sign in / Sign up

Export Citation Format

Share Document