scholarly journals Optimal dietary concentration of vitamin E for alleviating the effect of heat stress on performance, thyroid status, ACTH and some serum metabolite and mineral concentrations in broilers

2012 ◽  
Vol 47 (No. 4) ◽  
pp. 110-116 ◽  
Author(s):  
K. Sahin ◽  
O. Kucuk ◽  
N. Sahin ◽  
M. F Gursu

An experiment utilizing Cobb-500 male broilers was conducted to evaluate the effects of vitamin E (d1--to- copheryl acetate) supplementation at various concentrations (0, 62.5, 125, 250, or 500 mg/kg of diet) on performance and serum concentrations of Triiodothyronine (T<sub>3</sub>), Thyroxin (T<sub>4</sub>), Adrenocorticotropine Hormone (ACTH), and some metabolites and minerals in broilers reared under heat stress (32&deg;C). One day-old 150 male broilers were randomly assigned to 5 treatment groups, 3 replicates of 10 birds each. The birds received either a basal diet or basal diet supplemented with vitamin E at 62.5, 125, 250, or 500 mg/kg of diet. Increased supplemental vitamin E linearly increased feed intake (P = 0.01), live weight gain (P = 0.01), and improved feed efficiency linearly (P = 0.001). Increasing dietary vitamin E supplementation also resulted in linear increases in serum T<sub>3 </sub>and T<sub>4</sub> concentrations (P = 0.01) but, linear decreases in ACTH concentration (P = 0.01). Serum glucose, uric acid, triglycerides, and cholesterol concentrations decreased linearly (P = 0.001) while, protein and albumin concentrations increased linearly (P = 0.001) when dietary vitamin E supplementation increased. Serum activities of Serum Glutamic Oxalate Transaminase (SGOT) and Serum Glutamic Pyruvate Transaminase (SGPT) were not influenced by dietary vitamin E supplementation (P &gt; 0.10). However, serum activity of Alkaline Phosphatase (AP) increased linearly (P = 0.001) with increasing dietary vitamin E supplementation. Increasing dietary vitamin E supplementation also caused linear increases (P = 0.001) in serum concentrations of Ca and P. Results of the present study conclude that a 250 mg/kg of vitamin E provides an optimal performance in broiler chicks reared under heat stress, and vitamin E supplementation at such a level can be considered as a protective management practice in a broiler diet, reducing the negative effects of heat stress.

2001 ◽  
Vol 46 (No. 5) ◽  
pp. 140-144 ◽  
Author(s):  
K. Sahin ◽  
N. Sahin ◽  
M. Onderci ◽  
S. Yaralioglu ◽  
O. Kucuk

An experiment utilizing Cobb-500 male broilers was conducted to evaluate the effects of vitamin E supplementation at various concentrations on malonyldialdehyde (MDA) as an indicator of lipid peroxidation, serum and liver concentrations of antioxidant vitamins and some minerals of broilers reared under heat stress (32&deg;C). One day-old 150 male broilers were randomly assigned to 5 treatment groups, 3 replicates of 10 birds each. The birds received either a basal diet or basal diet supplemented with vitamin E (dl-a-tocopherol acetate) at 62.5, 125, 250, or 500 mg/kg of diet. Increased supplemental vitamin E linearly increased serum vitamin E and A, but decreased (P&nbsp;= 0.001) MDA concentrations. Increasing dietary vitamin E supplementation also resulted in linear increases in liver vitamin E and A concentrations, but linear decreases in MDA concentrations (P&nbsp;= 0.01). Increasing dietary vitamin E caused a linear increase in serum concentrations of Fe and Zn (P= 0.001), but a decrease in serum concentration of Cu (P&nbsp;= 0.001). Results of the present study conclude that in broiler chicks reared under heat stress a 250 mg of vitamin E supplementation can be considered as a protective management practice in a broiler diet, reducing the negative effects of heat stress.


2002 ◽  
Vol 72 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Kazim Sahin ◽  
Osman Kucuk ◽  
Nurhan Sahin ◽  
Mustafa Sari

This study was conducted to determine the effects of dietary vitamin C (L-ascorbic acid) and vitamin E (a-tocopherol acetate) on lipid peroxidation status measured as MDA and serum triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), as well as some other serum metabolite and mineral concentrations of Japanese quails reared under heat stress (34º C). One hundred-eighty 10-day-old Japanese quails were randomly assigned to six treatment groups, three replicates of 10 birds each. Using a 2 × 3 factorial design, the birds received two levels of vitamin C (100 and 200 mg/kg of diet) or three levels of vitamin E (125, 250, or 500 mg/kg of diet). Greater dietary vitamin E and vitamin C resulted in a greater serum T3, T4, and TSH (p=0.001), but lower ACTH (p=0.001) concentrations. Serum concentrations of T4 and TSH increased to a greater extent by increasing dietary vitamin C when greater vitamin E levels were fed (interaction, p=0.001). Serum glucose, urea, triglycerides, and cholesterol concentrations decreased (p=0.001), while protein and albumin concentrations increased (p =0.001) when both dietary vitamin C and vitamin E were increased. Serum activities of SGOT and SGPT were not influenced by dietary vitamin C or vitamin E (p>0.43). However, serum activity of AP increased (p=0.001) by increasing both dietary vitamin C and vitamin E. Increasing both dietary vitamin C and vitamin E caused an increase in serum concentrations of Ca, P, K (p=0.001), Fe, and Zn (p=0.01) but a decrease in serum concentrations of Na (p=0.001) and Cu (p=0.01). Interactions between vitamin C and vitamin E were detected for Ca, P, Na, and K (p =0.001). Greater dietary vitamin C and vitamin E resulted in a greater serum and liver vitamin E, C, and A (p_0.05), but lower MDA (p=0.001) concentrations. Results of the present study conclude that supplementing a combination of dietary vitamin C (200 mg) and vitamin E (250–500 mg) offers a good management practice to reduce heat stress-related decreases in performance of Japanese quails.


2001 ◽  
Vol 46 (No. 11–12) ◽  
pp. 286-292 ◽  
Author(s):  
N. Sahin ◽  
K. Sahin ◽  
O. Küçük

An experiment on Cobb-500 male broilers was conducted to evaluate the effects of vitamin E (alfa-tocopherol-acetate), vitamin A (retinol), and their combination on broiler performance and serum concentrations of triiodothyronine (T3), thyroxine (T4), adrenocorticotropine hormone (ACTH) and some metabolite and mineral concentrations in broilers reared under heat stress (32&deg;C). One day-old 120 broilers were randomly assigned to 4 treatment groups, 3 replications of 10 birds each. The birds were fed either a control diet or a control diet supplemented with either vitamin A (15 000 IU retinol/kg diet), vitamin E (250 mg alfa-tocopherol-acetate/kg diet), or a combination of vitamin A and E (15 000 IU retinol plus 250 mg of alfa-tocopherol-acetate/kg diet). Considered separately or as a combination, supplemental vitamin A and vitamin E increased feed intake (P&nbsp;= 0.01) and live weight gain (P&nbsp;= 0.03). However, feed efficiency remained similar in all treatments (P= 0.18). Serum T3&nbsp;and T4&nbsp;concentrations were also higher (P&nbsp;&le; 0.001) with vitamin A, vitamin E, and vitamin A plus vitamin E groups than those of the control. However, ACTH concentration in serum was lower (P&nbsp;&le; 0.001) in supplemental dietary vitamin groups compared with control. Serum glucose, uric acid, triglyceride, and cholesterol concentrations decreased (P&nbsp;&le; 0.001) while protein and albumin concentrations increased (P&nbsp;&le; 0.001) when both dietary vitamin E and vitamin A were supplemented. Serum activities of serum glutamic oxalate transaminase (SGOT) and serum glutamic pyruvate transaminase (SGPT) were not influenced by dietary vitamin E, vitamin A nor by a combination of vitamin A and vitamin E (P&nbsp;&gt; 0.72). However, serum activity of alkaline phosphatase (AP) increased (P&nbsp;&le; 0.001) with supplemental dietary vitamin E, vitamin A, or a combination of vitamin A and vitamin E. In addition, supplemental dietary vitamin E and vitamin A resulted in an increase in serum concentrations of both Ca and P (P &le; 0.001). In general, when a significant effect was found for a parameter, the magnitude of responses to vitamin supplements was greatest with the combination of vitamin A and vitamin E, rather than that of each vitamin supplement separately. The results of the present study show that supplementing a combination of dietary vitamin E and vitamin A offers a good management practice to reduce heat stress-related decreases in broiler performance. &nbsp;


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 798
Author(s):  
Zabihollah Nemati ◽  
Kazem Alirezalu ◽  
Maghsoud Besharati ◽  
Saeid Amirdahri ◽  
Daniel Franco ◽  
...  

The present study was carried out to investigate the effect of dietary vitamin E on growth performance, cellular immunity, carcass characteristics, and meat quality in geese. Sixty-four one-day-old male geese were selected from 1200 goose chicks with the same average body weight (92.5 ± 2.5 g) and subjected to two treatments (basal diet or control and basal diet plus 120 mg/kg vitamin E supplement) with 4 replicates (8 geese per replicate) for 8 weeks. After slaughter, goose meat was aerobically packed in polyethylene packages and stored at 4 °C for 9 days. The results showed that vitamin E supplementation improved the growth performance, carcass yield percentage, and immune response of goose (p < 0.05). The addition of vitamin E in the diet significantly increased the protein and fat content of goose meat but decreased the moisture and ash content with respect to those obtained from the control diet. During storage, meat from the vitamin E treatment showed higher phenolic content and lower thiobarbituric acid reactive substances (TBARSs) and total volatile nitrogen (TVB-N) values than those from the control treatment. Vitamin E supplementation increased the saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) in goose meat. However, goose meat supplemented with vitamin E displayed a significantly (p < 0.05) higher PUFA/SFA ratio than those of the control group. Based on the results, it was concluded that vitamin E could be used to improve the growth performance of goose, the meat composition in terms of the protein and fat content, the nutritional value in terms of the fatty acid composition, and the shelf life.


1998 ◽  
Vol 39 (1) ◽  
pp. 106-112 ◽  
Author(s):  
S. BOLLENGIER-LEE ◽  
M. A. MITCHELL ◽  
D. B. UTOMO ◽  
P. E. V. WILLIAMS ◽  
C. C. WHITEHEAD

2010 ◽  
Vol 105 (9) ◽  
pp. 1311-1319 ◽  
Author(s):  
Ya-Fan Chiang ◽  
Huey-Mei Shaw ◽  
Mei-Fang Yang ◽  
Chih-Yang Huang ◽  
Cheng-Hsien Hsieh ◽  
...  

We previously reported that, in rodents, a diet with a high oxidised frying oil (OFO) content leads to glucose intolerance associated with a reduction in insulin secretion. The present study aimed at investigating the impairment of pancreatic islets caused by dietary OFO. C57BL/6J mice were divided into three groups to receive a low-fat basal diet containing 5 g/100 g of fresh soyabean oil (LF group) or a high-fat diet containing 20 g/100 g of either fresh soyabean oil (HF group) or OFO (HO group). After 8 weeks, mice in the HO group showed glucose intolerance and hypoinsulinaemia, and their islets showed impaired glucose-stimulated insulin secretion (P < 0·05; HO group v. LF and HF groups). Significantly higher oxidative stress and a lower mitochondrial membrane potential were observed in the islets in the HO group compared with the LF and HF groups. Immunoblots showed that the reduction in insulin levels in HO islets was associated with activation of the c-Jun NH2-terminal kinase and a reduction in levels of pancreatic and duodenal homeobox factor-1. In a second study, when dietary OFO-induced tissue vitamin E depletion was prevented by large-dose vitamin E supplementation (500 IU(1·06 mmol all-rac-α-tocopherol acetate)/kg diet; HO+E group), the OFO-mediated reduction in islet size and impairment of glucose tolerance and insulin secretion were significantly attenuated (P < 0·05; HO group v. HO+E group). We conclude that a high level of dietary OFO ingestion impairs glucose metabolism by causing oxidative damage and compromising insulin secretion in pancreatic islets, and that these effects can be prevented by vitamin E supplementation.


Sign in / Sign up

Export Citation Format

Share Document