scholarly journals Winter wheat yields under different soil-climatic conditions in a long-term field trial

2019 ◽  
Vol 65 (No. 1) ◽  
pp. 27-34 ◽  
Author(s):  
Martin Káš ◽  
Gabriela Mühlbachova ◽  
Helena Kusá

The impact of precipitations and air temperatures on winter wheat yields was evaluated in a 34-year long-<br /> term field trial with mineral and organic fertilization established at two experimental sites with different soil-climatic conditions: Ivanovice na Hané with well fertile soils (degraded Chernozem), higher average year temperatures and lower precipitations; Lukavec situated in Bohemian-Moravian highlands with less fertile soils (Cambisol), lower temperatures and higher precipitations. At both sites, a significant positive effect of used fertilizers was noted from the dose of 80 kg N/ha; the best yields were generally obtained at 120 kg N/ha and 160 kg N/ha. The wheat yields at the Ivanovice site were negatively affected by the decrease of precipitations, namely in more fertilized treatments, particularly farmyard manure + mineral nitrogen, from the dose of 80 kg N/ha. A different trend was obtained at the Lukavec site where better winter wheat yields were obtained under lower precipitations. The air temperatures played a positive role at the Lukavec site, but no significant effect of temperature was observed at the Ivanovice site. The less productive areas in highlands can become more interesting for agriculture production with changing climate. However, the soils generally having lower quality and nutrient content can be a limiting factor for obtaining high yields.

OENO One ◽  
2017 ◽  
Vol 51 (2) ◽  
pp. 147 ◽  
Author(s):  
Cornelis Van Leeuwen ◽  
Agnès Destrac-Irvine

<p style="text-align: justify;"><strong>Aim:</strong> Major effects of climate change are an increase in temperature, a modification in rainfall patterns and an increase in incoming radiations, in particular UV-Bs. Grapevines are highly sensitive to climatic conditions. Hence, plant development, grape ripening and grape composition at ripeness are modified by climate change. Some of these changes are already visible and will be amplified over the coming decades; other effects, although not yet measurable, can be predicted by modeling. The objective of this paper is to assess which modifications in wine quality and typicity can be expected and what levers growers can implement to adapt to this changing situation. </p><p style="text-align: justify;"><strong>Methods and results:</strong> This paper focusses on the effect of temperature, vine water status and UV-B radiation in viticulture. Vine phenology is driven by temperacture. A significant advance in phenology (i.e. budburst, flowering and veraison dates) has been observed since the early 1980’s in most winegrowing regions. The combined effect of advanced phenology and increased temperatures results in warmer conditions during grape ripening. In these conditions, grapes contain more sugar and less organic acids. Composition in secondary metabolites, and in particular aromas and aroma precursors, is dramatically changed. Increased drought, because of lower summer rain and/or because of higher reference evapotranspiration (ET<sub>0</sub>), induces earlier shoot growth cessation, reduced berry size, increased content in skin phenolic compounds, lower malic acid concentrations and modified aroma and aroma precursor profiles. Increased UV-B radiation enhances the accumulation of skin phenolics and modifies aroma and aroma precursor profiles. Over the next decades, an amplification of these trends is highly likely. Major adaptations can be reached though modifications in plant material (grapevine varieties, clones and root stocks), vineyard management techniques (grapevine architecture, canopy management, harvest dates, vineyard floor management, timing of harvest, irrigation) or site selection (altitude, aspect, soil water holding capacity).</p><p style="text-align: justify;"> <strong>Conclusion:</strong> Climate change will induce changes in grape composition which will modify wine quality and typicity. However, these modifications can be limited through adaptations in the vineyard.</p><p style="text-align: justify;"><strong>Significance and impact of the study:</strong>  This study assesses the impact of major climatic parameters (temperature, water and radiation) on vine physiology and grape ripening. It addresses the issue of how the expected changes under climate change will impact viticulture. It is shown that appropriate levers do exist to allow growers to adapt to this new situation. Among these, modifications in plant material and viticultural techniques are the most promising tools.</p><div> </div>


Author(s):  
N. Khalvashi ◽  
◽  
G. Memarne ◽  
D. Baratashvili ◽  
N. Kedelidze ◽  
...  

n the paper isdiscussedthe results of mandarin plantations monitoring damaged by frost in winter. Despite thecenturies-old history of citrus production in Georgia, the danger of frost damageremains a major limiting factor for the spread of citrus. The monitoring revealed that although the temperature was quite critical for mandarin in February 2020 (-11-12°C, in some places -14°C), the frost damage to the plantations was not high, but was inhomogeneous. Observations revealed that the damage to mandarin plantations was due not only to the impact of low temperatures, but also to many other factors that had a significant impact on the degree of damage to the plantations. Based on the analysis ofmonitoring results and multi-year data, it was found that the risk of frost damage to the citrus in winter in Georgia due to global warming is significantly reduced comparedto previous years, but the incidence of autumn-spring frosts has increased which indicates the adaptation of the citrus crops to the climatic conditions of Georgia.


2014 ◽  
Vol 60 (No. 5) ◽  
pp. 198-203 ◽  
Author(s):  
B. Rutkowska ◽  
W. Szulc ◽  
T. Sosulski ◽  
W. Stępień

The effects of mineral and organic fertilization on the contents of Fe, Cu, Zn, Mn, B and Mo in soil and in the soil solution as well as on availability of these elements for crops were investigated in the long-term field trial. The highest contents of Zn, Fe, Mn and Cu in soil and soil solution were observed in the treatment with the lowest pH (NPK). In this same combination the content of B and Mo was the lowest. The concentration of Zn, B and Fe in the soil solution significantly increased under farmyard manure application. Liming significantly decreased contents extractable by 1 mol/L HCl forms of Mn and Zn and significantly increase the content of Mo in the soil. Regardless of fertilization applied, microelement concentrations in the soil solution are sufficient for fulfilling nutritional needs of plants cultivated during the trial.


2019 ◽  
Vol 11 (2) ◽  
pp. 465
Author(s):  
Diogo H. M. Moraes ◽  
Derblai Casaroli ◽  
Adão W. P. Evangelista ◽  
José Alves Júnior ◽  
Rafael Battisti ◽  
...  

Full plant growth and development require, among others, air temperatures and water availability at levels appropriate to each crop. The effect of temperature on plant development can be represented by the thermal sum, which requires the lower basal temperature for each plant species. However, plant responses may be different when associated with different soil water contents. This work determined the lower and upper basal temperature of Jatropha curcas L. and verified the relationship between thermal sum and crop development under different water regimes, in the climatic conditions of Goi&acirc;nia, GO, Brazil. We evaluated twenty-four plants cultivated at the planting density of 2,222.2 plants ha-1. Of these, twelve plants were irrigated from October 2010 to October 2012, whereas the other twelve remained unirrigated. Basal temperatures were estimated by four different methods described in the literature, in two phases of observation, maturity and total cycle. From the results, regression analysis was performed. The lower basal temperature was 4.9 and 7.2 &deg;C, and upper basal temperature was 38.8 and 36.8 &deg;C, respectively, for the maturity and total cycle stages. The accumulated thermal sum for the complete plant development of jatropha was 10,314.55 DD (&plusmn;1574.73) for the non-irrigated treatment, and 9,260.67 DD (&plusmn;735.06) for the irrigated treatment. The results of plant development showed good coefficient of determination in relation to the accumulated thermal sum.


OENO One ◽  
2017 ◽  
Vol 51 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Cornelis Van Leeuwen ◽  
Agnès Destrac-Irvine

Aim: Major effects of climate change are an increase in temperature, a modification in rainfall patterns and an increase in incoming radiations, in particular UV-Bs. Grapevines are highly sensitive to climatic conditions. Hence, plant development, grape ripening and grape composition at ripeness are modified by climate change. Some of these changes are already visible and will be amplified over the coming decades; other effects, although not yet measurable, can be predicted by modeling. The objective of this paper is to assess which modifications in wine quality and typicity can be expected and what levers growers can implement to adapt to this changing situation. Methods and results: This paper focusses on the effect of temperature, vine water status and UV-B radiation in viticulture. Vine phenology is driven by temperacture. A significant advance in phenology (i.e. budburst, flowering and veraison dates) has been observed since the early 1980’s in most winegrowing regions. The combined effect of advanced phenology and increased temperatures results in warmer conditions during grape ripening. In these conditions, grapes contain more sugar and less organic acids. Composition in secondary metabolites, and in particular aromas and aroma precursors, is dramatically changed. Increased drought, because of lower summer rain and/or because of higher reference evapotranspiration (ET0), induces earlier shoot growth cessation, reduced berry size, increased content in skin phenolic compounds, lower malic acid concentrations and modified aroma and aroma precursor profiles. Increased UV-B radiation enhances the accumulation of skin phenolics and modifies aroma and aroma precursor profiles. Over the next decades, an amplification of these trends is highly likely. Major adaptations can be reached though modifications in plant material (grapevine varieties, clones and root stocks), vineyard management techniques (grapevine architecture, canopy management, harvest dates, vineyard floor management, timing of harvest, irrigation) or site selection (altitude, aspect, soil water holding capacity). Conclusion: Climate change will induce changes in grape composition which will modify wine quality and typicity. However, these modifications can be limited through adaptations in the vineyard.Significance and impact of the study:  This study assesses the impact of major climatic parameters (temperature, water and radiation) on vine physiology and grape ripening. It addresses the issue of how the expected changes under climate change will impact viticulture. It is shown that appropriate levers do exist to allow growers to adapt to this new situation. Among these, modifications in plant material and viticultural techniques are the most promising tools. 


2018 ◽  
Vol 26 (4) ◽  
pp. 309-315 ◽  
Author(s):  
O. S. Demyanyuk ◽  
О. V. Sherstoboeva ◽  
A. A. Bunas ◽  
O. V. Dmitrenko

Groups of microorganisms in soils perform the role of global biogeochemical membrane which provides metabolism of substances and energy between the pedosphere, lithosphere, hydrosphere and living organisms. Сlimate change has resulted in a complex combination of unpredictable changeability of the environment, which is a serious test for the stability and productivity for the natural and anthropogenically transformed ecosystems. Changeability of the hydrothermal factors causes serious changes in the structure and metabolic activity of soil microorganisms, the quality and properties of soil. We studied the impact of hydrothermal factors on the content of carbon, microbial biomass and organic substance in deep chernozem of a natural ecosystem (fallow) and an agroecosystem under different systems of fertilization of winter wheat. A close relationship (r = 0.69–0.79) was determined between the content of microbial biomass in soil and hydrothermal factors (air temperature and moisture). Excessive drought and high parameters of air temperature led to decrease in the content of microbial biomass by 1.5–2.8 times compared to the years with optimum parameters of hydrothermal regime (HTC = 1.0). Leveling out the impact of high temperatures on the productivity of the soil microbiota occurs at a sufficient amount of moisture, and also available nutrients. Drought (HTC = 0.4) and excessive moisture (HTC = 2.0) following heightened air temperatures reduce the release of СО2 from soil. Fallow soil usually has a high content of microbial carbon in the organic compounds of soil (Сmic/Сorg was 2%). In the agroecosystem, there was recorded a decrease by 26–32% of the Сmic specific share in the content of the organic compound of the soil compared to the natural analogue. With organic and organic-mineral systems of fertilization, an increase in Сmic/Сorg parameter occurs and the soil parameters become close to the soil of a natural ecosystem. The calculated ecological coefficients of the orientation of microbial processes in soil indicate a possibility of a balanced functioning of the microbial group and introducing organic and organic-mineral fertilizers, creating optimum conditions for the productivity of winter wheat.


2020 ◽  
Vol 270 ◽  
pp. 110929
Author(s):  
Shaohui Huang ◽  
Wencheng Ding ◽  
Junfang Yang ◽  
Jiajia Zhang ◽  
Sami Ullah ◽  
...  

2018 ◽  
Vol 64 (No. 1) ◽  
pp. 38-46 ◽  
Author(s):  
Madaras Mikuláš ◽  
Mayerová Markéta ◽  
Kumhálová Jitka ◽  
Lipavský Jan

The influence of mineral fertilisers, liming, farmyard manure and sowing rate on the winter wheat grain yields was studied in a long-term field experiment at 4 sites under different soil and climatic conditions in the Czech Republic. A total of 135 partial fraction-factorial experiments were performed between 1980 and 2013 and evaluated using a statistical model with linear and quadratic terms for each factor. Yield trends demonstrated remarkable influence of fertilisation at two sites of lower starting productivity. Here, grain yields increased by 50% and 25% since the trial commencement, while the rate of yield increase was low at more productive sites. Yields were the most frequently influenced by nitrogen (N) fertilisation, uniformly at all sites. N response curves were strongly curvilinear, but these differed between sites and were affected by preceding crops. The relative frequency of statistically significant influences decreased in the following order: N (significant at α &lt; 0.05 in 89% of all partial trials) &gt; sowing rate (29%) &gt; phosphorus (22%) &gt; farmyard manure (15%) &gt; potassium (12%) &gt; liming (8%). This order and the frequencies of these influences are discussed with regard to relevant site and soil conditions.


Crustaceana ◽  
2014 ◽  
Vol 87 (3) ◽  
pp. 291-304 ◽  
Author(s):  
Patricia Elizabeth Garcia ◽  
María C. Dieguez

The aim of this investigation is to address the impact of fluctuations in temperature and ultraviolet radiation (UVR) on three species of South American copepods, Boeckella antiqua, B. gracilis and B. brevicaudata. These copepods are cold stenotherm and occur in high latitude lakes of South America and in mountain lakes in the Andes. The forecast scenarios for climate change in southern South America anticipate raising temperature and UVR levels. These changes may have the potential to impact high altitude and latitude ecosystems, including lakes and their cold adapted biota, such as those in Patagonia. Laboratory experiments, consisting of 10 day and 2 day incubations, were set up to analyse copepod mortality in relation with: (i) temperature, and (ii) the combined effect of temperature (5, 8, 12, 16, 20°C) and UV-B dose (61, 194 and 324 J m−2). The results obtained showed up that temperature is a limiting factor for B. brevicaudata that did not survive above 12°C. B. antiqua and B. gracilis withstood the temperature range although their mortality was higher at 12-16°C. The survivorship of these copepod species to radiation was found to depend on the UV-B dose, resulting in higher mortality at the highest UV-B dose. Overall, at least one Boeckella species showed an acute sensitivity to increasing temperature, and the three species studied proved tolerant to the UV-B experimental exposure. The survivorship patterns observed in Boeckella species reflect clearly their adaptation to high solar radiation exposure and to temperate to cold environmental conditions.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Weiwei Liu ◽  
Weiwei Sun ◽  
Jingfeng Huang ◽  
Huayang Wen ◽  
Ran Huang

In the era of global climate change, extreme weather events frequently occur. Many kinds of agro-meteorological disasters that are closely related to environmental conditions (such as sunshine hours, temperature, precipitation, etc.) are witnessed all over the word. However, which factor dominates winter wheat production in the middle and lower reaches of the Yangtze River remains unresolved. Quantifying the key limiting meteorological factor could deepen our understanding of the impact of climate change on crops and then help us to formulate disaster prevention and mitigation measures. However, the relative role of precipitation, sunshine hours and maximum daily temperature in limiting winter wheat yield in the middle and lower reaches of the Yangtze River is not clear and difficult to decouple. In this study, we used statistical methods to quantify the effect of precipitation, maximum temperature and sunshine hours extremes on winter wheat (Triticum aestivum L.) yield based on long time-series, county-level yield data and a daily meteorological dataset. According to the winter wheat growing season period (October of the sowing year to May of the following year), anomaly values of cumulative precipitation, average sunshine hours and average daily maximum temperature are calculated. With the range of −3 σ to 3 σ of anomaly and an interval of 0.5 σ (σ is the corresponding standard deviation of cumulative precipitation, mean maximum temperature and mean sunshine hours, respectively), the corresponding weighted yield loss ratio (WYLR) represents the impact of this kind of climate condition on yield. The results show that excessive rainfall is the key limiting meteorological factor that can reduce winter wheat yield to −18.4% in the middle and lower reaches of the Yangtze River, while it is only −0.24% in extreme dry conditions. Moreover, yield loss under extreme temperature and sunshine hours are negligible (−0.66% for extremely long sunshine hours and −8.29% for extreme cold). More detailed analysis results show that the impact of excessive rainfall on winter wheat yield varies regionally, as it causes severe yield reductions in the Huai River basin and the middle to southern part with low elevation and rainy areas of the study area, while for drier areas in the Hubei province, there is even an increase in yield. Our results disclosed with observational evidence that excessive precipitation is the key meteorological limiting factor leading to the reduction in winter wheat yield in the middle and lower reaches of the Yangtze River. The knowledge of the possible impact of climate change on winter wheat yield in the study area allows policy-makers, agronomists and economists to better forecast a plan that differs from the past. In addition, our results emphasized the need for better understanding and further process-based model simulation of the excessive rainfall impact on crop yield.


Sign in / Sign up

Export Citation Format

Share Document